๖๓๒๒-๒๑๙-๐๗ ภาษาอังกฤษสำหรับงานอุตุนิยมวิทยา

๓-๐-๓

(English for Meteorological Field)

จุดประสงค์รายวิชา เพื่อให้

- ๑. มีความรู้ความเข้าใจเกี่ยวกับคำศัพท์ วลี ภาษาอังกฤษสำหรับงานด้านอุตุนิยมวิทยา
- ๒. มีความรู้ความเข้าใจเกี่ยวกับความหมาย และแนวทางการใช้ภาษาอังกฤษสำหรับงาน อุตุนิยมวิทยา
- ๓. มีความรู้ความเข้าใจเกี่ยวการรายงานข่าวอากาศ การพยากรณ์อากาศและแจ้งเตือนสภาพอากาศ ภาษาอังกฤษ
- ๔. มีเจตคติที่ดีเกี่ยวกับการเรียนรู้ ฝึกฝน และค้นคว้าเพิ่มเติมภาษาอังกฤษ สำหรับงานด้านอุตุนิยมวิทยา

สมรรถนะรายวิชา

- ๑. อ่าน ฟัง พูดและเขียนคำศัพท์ วลี ภาษาอังกฤษสำหรับงานด้านอุตุนิยมวิทยา
- ๒. แสดงความรู้เกี่ยวกับความหมายและแนวทางการใช้ภาษาอังกฤษสำหรับงานอุตุนิยมวิทยา
- ๓. แสดงความรู้เกี่ยวกับการรายงานข่าวอากาศ การพยากรณ์อากาศและแจ้งเตือนสภาพอากาศ ภาษาอังกฤษ

คำนำ

เอกสารประกอบการบรรยายวิชาภาษาอังกฤษฉบับนี้จัดทำขึ้นเพื่อใช้ประกอบการเรียนรู้ในกลุ่มสมรรณะวิชาชีพ เฉพาะ ๖๓๒๒-๒๑๙-๑๗ ภาษาอังกฤษสำหรับงานอุตุนิยมวิทยา (English for Meteorological field) ตามหลักสูตรโรงเรียน จำอากาศ พุทธศักราช ๒๕๖๔ เหล่าทหารอุตุ โรงเรียนจำอากาศ กรมยุทธศึกษาทหารอากาศ เพื่อให้นักเรียนจำ อากาศ เหล่าทหารอุตุมีความรู้ด้านภาษาอังกฤษที่เกี่ยวข้องกับงานอุตุนิยมวิทยา

เอกสารประกอบการบรรยายได้จำแนกเนื้อหาหลักออกเป็นสองส่วน โดยส่วนแรกนำมาจากตำรา MODULE 006 WEATHER ของ Defense Language Institute English Language Center (DLIELC) ซึ่งเป็น การประยุกต์ระหว่างวิชาภาษาอังกฤษ(โครสร้างและไวยากรณ์)และเนื้อหาสาระทางอุตุนิยมวิทยา ผู้เรียนจะได้เรียนรู้ และพัฒนาทักษะด้านการอ่าน พูด ฟัง เขียนและเพิ่มพูนทักษะการใช้ภาษาอังกฤษ ส่วนที่สองเกี่ยวข้องกับ English language for RTAF Weather Corps. เนื้อหาสาระมุ่งเน้นในการพูดโต้ตอบในการให้บริการเบื้องต้นหรือการแจ้งเตือน ข้อมูลข่าวอากาศชนิดต่าง ๆ ให้กับผู้เกี่ยวข้องหรือเมื่อได้รับการร้องขอ ความรู้และทักษะที่ได้รับจะเป็นพื้นฐาน เบื้องต้นให้กับผู้เรียนใช้ศึกษาค้นค้วาเอกสาร ตำรา บทความทางอุตุนิยมวิทยาในส่วนที่เป็นภาษาอังกฤษที่เผยแพร่ ทั่วไปหรือตามสื่ออิเล็กทรอนิกส์ต่าง ๆ ได้ในระดับหนึ่ง ตลอดจนสามารถให้บริการหรือบรรยายสรุปภาคภาษาอังกฤษ ซึ่งมี การปฏิบัติจริงในการปฏิบัติงานในหน้าที่

ผู้จัดทำ (น.อ.เสนีย์ ฉัตรวิไล) หวังเป็นอย่างยิ่งว่าเอกสารประกอบการศึกษานี้จักเป็นประโยชน์ต่อผู้ทำ การสอนและผู้เรียน หรือผู้สนใจใคร่รู้ตามสมควร อย่างไรก็ตามหากพบข้อบกพร่อง หรือมีข้อแนะนำเพิ่มเติม กรุณาแจ้งต่อผู้จัดทำเพื่อจะได้ดำเนินการแก้ไข ปรับปรุงอันจะทำให้เอกสารประกอบการศึกษามีความสมบูรณ์ ยิ่งขึ้นต่อไป

โรงเรียนจ่าอากาศ กรมยุทธศึกษาทหารอากาศ

<u>ಅ</u>೯,೨೯

กิติกรรมประกาศ

ตามที่ คณก. ปรับปรุงหลักสูตรสายวิทยาการอุตุนิยมวิทยาได้เสนอให้มีการเพิ่มเติมวิชาภาษาอังกฤษที่ เกี่ยวข้องกับอุตุนิยมวิทยาในหลักสูตรโรงเรียนจ่าอากาศ พุทธศักราช ๒๕๖๔ เหล่าทหารอุตุ โรงเรียนจ่าอากาศ กรมยุทธศึกษาทหารอากาศและได้รับการอนุมัติให้มีการเรียนการสอนนั้น ผู้จัดทำได้รับมอบให้จัดทำเอกสาร ประกอบการเรียนการสอน และจากประสบการณ์ที่ได้รับทุน IMET FY96 ให้ไปศึกษา ณ ประเทศสหรัฐอเมริกา โดยในเบื้องต้นได้เข้ารับการศึกษาที่ Defense Language Institute English Language Center(DLIELC), Lackland Air Force Base มลรัฐ Texas ก่อนที่จะไป Follow On Training ขณะที่ผู้จัดทำได้เรียน MODULE 006 WEATHER พบว่าตำราที่ DLIELC จัดทำขึ้นเพื่อวัตถุประสงค์ในการพัฒนาทักษะด้านต่าง ๆ ตลอดจน เพิ่มพูนการใช้ภาษาอังกฤษทางด้านอุตุนิยมวิทยาซึ่งสอดคล้องอย่างมากกับวัตถุประสงค์ที่ทาง คณก.ๆ ต้องการ และ จากนโยบายของ กพ.ทอ. ให้หน่วยจัดทำภาษาอังกฤษที่ใช้ในสายวิทยาการขึ้นจึงเป็นที่มาของเอกสารประกอบการ เรียนการสอนอบับนี้

ผู้จัดทำกราบขอบพระคุณครู อาจารย์ที่สั่งสอนวิชาภาษาอังกฤษทั้งในประเทศและต่างประเทศ และ ขอขอบคุณ คณก.ปรับปรุงหลักสูตรฯ ที่ได้มีการปรับปรุงหลักสูตรของโรงเรียนจ่าอากาศ เหล่าทหารอุตุฯ รวมทั้งได้มอบ ความไว้วางใจให้จัดทำเอกสารประกอบการเรียนการสอน นอกจากนี้ขอขอบคุณ ร.ท.มณเฑียร ทาสี ที่กรุณามอบตำรา MODULE 006 WEATHER ในชุด INSTRUCTOR Book ซึ่งได้รับมอบจากศูนย์ภาษา ยศ.ทอ.ทำให้เอกสาร ประกอบการเรียนการสอนมีความครบถ้วนสมบูรณ์ทั้งของผู้สอนและผู้เรียนอันเป็นการเพิ่มประสิทธิภาพในการเรียน การสอนได้ดียิ่งขึ้น สุดท้ายขอขอบคุณ จ.อ.วัชรพงศ์ ทิพย์ภาลัย ผู้รับมอบหน้าที่ในการจัดพิมพ์ตลอดจน จนท. ทุกท่านที่มีส่วนช่วยในการจัดทำเอกสารประกอบการเรียนการสอนจนกระทั่งสำเร็จเรียบร้อย

น.อ.เสนีย์ ฉัตรวิไล ประจำ คปอ.และ รรก.รอง ผบ.ศขอ.กขอ.คปอ.

ก.ย.๖๔

TABLE OF CONTENTS

UNIT 1 INTRODUCTION TO WEATHER	1 - 18
SECTION 1 EARTH GEOGRAPHY	
SECTION 2 CLIMATE AND WEATHER	
UNIT2 WEATHER CAUSES(1)	19 – 39
SECTION 1 ATMOSPHERE	
SECTION 2 ATMOSPHERIC PRESSURE	
SECTION 3 TEMPERATURE	
SECTION 4 STANDARD ATMOSPHERE	
UNIT 3 WEATHER CAUSES(2)	40 – 57
SECTION 5 CIRCULATION	
SECTION 6 AIR MASSES	
UNIT 4 WEATHER CAUSES(3)	58 – 75
SECTION 7 CLOUDS	
UNIT 5 WEATHER CAUSES(4)	76 – 95
SECTION 8 FRONTS	
UNIT 6 WEATHER HAZARDS(1)	96 – 116
SECTION 1 RESTRICTIONS TO VISIBILITY	
SECTION 2 ICING	
UNIT 7 WEATHER HAZARDS(2)	117 – 137
SECTION 3 TURBULENCE	
UNIT 8 WEATHER HAZARDS(3)	138 – 155
SECTION 4 THUNDERSTORMS	
REVIEW UNIT 1	156 – 159
REVIEW UNIT 2	160 – 165
REVIEW UNIT 3	166 – 173
REVIEW UNIT 4	174 – 178
REVIEW 5	179 – 182
REVIEW 6	183 – 187

TABLE OF CONTENTS(CON)

REVIEW UNIT7	188 -192
REVIEW UNIT 8	193 – 196
ENGLISH LANGUAGE FOR RTAF WEATHER CORPS.	197 – 212
REFERENCES	213

UNIT 1

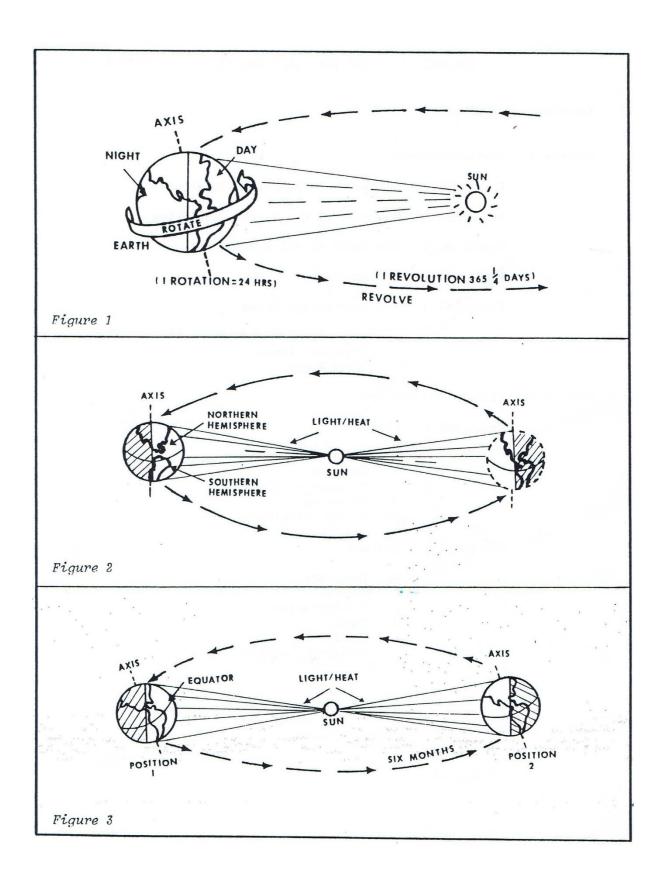
Introduction To Weather

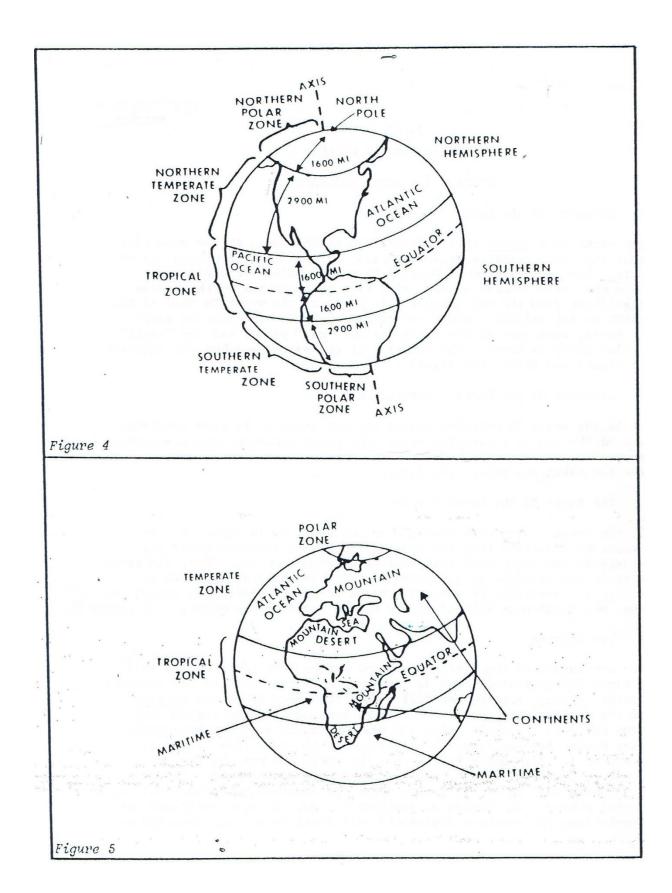
SECTION 1. EARTH GEOGRAPHY

1. Movement Of The Farth - Rotation

The earth is a <u>sphere</u> that revolves around the sun. At the same time that the earth revolves around the sun, it also rotates around its own axis. The sun radiates light/heat that is received by the earth. When the earth rotates on its axis, some parts of the earth receive light/heat from the sun (day); while parts on the opposite side of the earth do not (night). Since the earth completes one rotation every 24 hours, each part of the earth has one "day" period and one "night" period every 24 hours. The rotation of the earth produces the sequence of nights and days. See figure 1.

2. Movement Of The Earth - Revolution


While the earth is rotating around its own axis, it is also revolving around the sun in a circular path. The earth completes one revolution around the sun every 365% days. Each revolution the earth makes around the sun takes one year. See figure 1.


3. The Angle Of The Earth's Axis

If the earth's axis were straight up and down, as in figure 2, the amount of radiation from the sun that each part receives would not change as the earth made its revolution around the sun. But, the earth's axis is not straight up and down, it is at an angle as is shown in figure 3. According to where the earth is in its revolution around the sun, one hemisphere will be closer to the sun than the other. See figure 3.

4. The Seasons

The revolution of the earth around the sun and the angle of the axis produce the general changes in temperature that are called the seasons: winter, spring, summer, and fall. When the <u>areas</u> above the <u>equator</u> in the <u>northern</u> hemisphere have winter because they are angled away from the sun, the areas below the equator in the <u>southern</u> hemisphere have summer because they are angled toward the sun. See figure 3, position 1. Six months later, when the earth has made half of a revolution around the sun, the positions will be reversed. The northern hemisphere will be having summer while the southern hemisphere will be having winter. See figure 3, position 2. As the earth continues its revolution, the northern hemisphere will start to be away from the sun

and have fall, while the southern hemisphere will start to be toward the sun and have spring. The revolution of the earth and the angle of the axis produce the sequence of the seasons—winter, spring, summer, and fall—each year.

5. The Temperature Zones

It is useful to divide the earth's surface into three general types of temperature zones, based on the angle of the earth's axis and the revolution of the earth around the sun. See figure 4.

- a. <u>Tropical Zone</u>. The tropical zone <u>extends</u> approximately 1600 miles (2600 km) north of the equator and 1600 miles south of the equator. The areas in the tropic zone tend to be warm or hot throughout the year. See figure 4.
- b. <u>Temperate Zones</u>. There are two temperate zones, one in the northern hemisphere and the other in the southern hemisphere. The northern temperate zone extends north from the tropical zone approximately 2900 miles (4700 km). The southern temperate zone extends south from the tropical zone the same distance. Areas in the temperate zones tend to have warm or hot summers and cool or cold winters. See figure 4.
- c. <u>Polar Zones</u>. There are also two polar zones, one in each hemisphere. The northern polar zone extends approximately 1600 miles from the northern temperate zone to the north pole. The southern polar zone extends from the southern temperate zone to the south pole. Areas in the polar zones tend to be cold. See figure 4.

SECTION 2. CLIMATE AND WEATHER

1. Climate

Climate is the word used to describe the general year after year weather conditions in a particular region or area. When a particular area is described, the geography of the area and its climate are closely related. Some of the major factors that determine the climate of an area are as follows:

- a. The Temperature Zone. The temperature zone that an area is located in is usually a major factor in its climate. See figure 5.
- b. Humidity. The amount of evaporated water in the air is a major factor in the climate of an area. Clouds are formed when evaporated water condenses into very small drops of water. Larger drops become precipitation that falls as the area's rain, snow, sleet, and hail.
- c. Movement of the Air. The air that makes up the earth's atmosphere does not remain in one place but moves about the earth. Cold polar air moves across the temperate zones, as does <u>tropical</u> air. Maritime air from overseas and oceans moves across the <u>continents</u>, and continental air moves over other parts of the continent, or out over the seas. The movement of air is a major climate factor.
- d. <u>Elevation</u>. The height of an area above <u>sea level</u> is often an important climate factor. As a general rule temperatures decrease as height or altitude above sea level increases. Higher areas usually have cooler or colder climates than low regions in the same area. See figure 5.
- e. General Geography. In addition to the general temperature zone an area is located in, other geographic factors that are important to a climate can be the availability of surface water in the form of oceans, seas, rivers, and lakes, and the location of mountain zones that control the movements of the air in a region or area. See figure 5.

2. Weather

If climate is a word used to describe the general year-to-year weather conditions in an area, then weather is the word used to describe the day-to-day atmospheric conditions. Since everybody experiences the weather conditions around him throughout his life, weather is discussed in nontechnical terms by all people. Some of the more common terms used to describe particular weather features are listed below.

- a. <u>Temperature</u>. Days are described as hot, cold, cool, or warm; or thermometer temperatures are given in degrees Celsius or degrees Fahrenheit.
- b. clouds. Days are described as being clear, cloudy, or overcast. Clouds on the surface are called fog. Certain clouds, particularly if they are black colored, are called rain clouds or thunder clouds.

c. Precipitation. hail, or sleet.

Precipitation is identified as being rain, snow,

- d. Winds. Winds are described as being strong or light, and are often identified by the direction they blow from, i.e., north wind, east wind, etc.
- e. Storms. Strong winds that combine with other conditions are called storms, i.e., rainstorms, snowstorms, hailstorms, sandstorms, duststorms, and thunderstorms.
- f. Humidity. Days are described as being humid or dry.

GLOSSARY

AREA: noun; a particular zone, region, or part

Ex. This <u>area</u> of the country has a lot of mountains.

CONTINENT: noun; a large land area on the earth's surface

Ex. The North American continent is north of the equator.

CONTINENTAL: adjective form of continent (-al)

ELEVATION: noun; the height of a feature on a surface, usually

the distance above sea level

Ex. That city is near the sea; the elevation is only 50 feet.

EQUATOR: noun; an imaginary line around the middle of the earth

midway between the north and south poles

Ex. The area of the earth north of the equator is called the northern hemisphere.

EXTEND: verb; (1) to reach from one point to another

Ex. The United States <u>extends</u> from the Atlantic Ocean to the Pacific Ocean.

Ex. The blackboard <u>extends</u> from one wall to the other.

(2) to reach out or up

Ex. The atmosphere extends many miles up from the surface of the earth.

Ex. The wings <u>extend</u> out from the sides of the airplane.

MARITIME: adjective; areas near the sea or sea areas

Ex. Air from the <u>maritime</u> areas usually contains a lot of moisture.

NORTHERN: Adjective form of north (-ern)

POLAR: adjective form of pole (-ar)

POLAR ZONE: noun; the temperature zones near the north pole and the south pole.

SEA LEVEL: noun; the height of the surface of the oceans, usually used as the zero (\emptyset) point to measure elevation

Ex. The elevation of the airport is 2,000 feet above sea level.

SOUTHERN: adjective form of south (-ern)

SPHERE: noun; a ball-shaped object

Ex. An orange is a sphere-shaped fruit.

Note: hemisphere = half-sphere

TEMPERATE ZONE: the area of the earth's surface between the tropical zone and the polar zones

THERMOMETER: an instrument used to measure temperature

Ex. It's cold today, the thermometer only shows 5 degrees centigrade.

Note: thermo (heat) + meter (measuring instrument)

TROPICAL: adjective form of tropic

TROPICAL ZONE: the area of the earth's surface extending 1600 miles

north and 1600 miles south of the equator

Language Exercises

I. NEW TERMINOLOGY: Oral Exercises

1. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces.

	Equator	polar zones	t	ropical zone	
	extend	southern			
	northern	temperate zo	ne		
a.	The tropical zone	about 1600 miles	north and sout	h of the equator.	
b.	The northernzone.	is located betw	veen the tropical	zone and the north	iern polar
c.	Temperatures in the _		tend to be warn	n or hot through out	t the year.
d.	The dividing line between	een the northern her	misphere and th	e southern hemisph	ere is the
e.	Temperatures in the se		one are about th	ne same as those in	the
f.	The temperat zone.	e zone is located bet	ween the tropic	cal zone and the sou	ıthern polar
g.	We associate ice, snov	v, and year-round co	ld weather with	the	
	When the northern he summer.	emisphere is having w	vinter, the	hemisphere is ha	ving
	When we are above th				; when we
J.	We usually think of the from the north pole to		imaginary line. T	hat through t	the earth,
k.	The around the north and		from the fact th	at they are the zone	es located
l.	Weather in thewarm/hot and winters		he same throug	nout the year; sumn	ners are
m	. The in relation to the sun				
n.	The climates in the tw changes by seasons be according to whether	ecause their position	s are greatly cha	inged in the revoluti	

2. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces.

	area	maritime	thermometer	
	continent	polar	tropical	
	continental	sea level		
	elevation	sphere		
a.	We usually think of _	climates	as being cold all year.	
b.	Africa is a good exam	ple of a large land a	rea that is called a	_ •
c.	When we talk about near,		can almost assume that the	elevation is at, or
d.	Higher usu	ally have lower temp	peratures than lower	_ in the same region.
e.	Most people association are mountains near		round climates with ve snow all year.	areas, but there
f.	It is necessary to have	e a to accur	rately measure temperature.	
g.	Evaporation from th	e oceans and seas ca	auses air to be hu	umid.
h.	. We would expect air	from a	area to be cold, and air from	ı a
	area to be warm or h	ot.		
i.	Since air from ausually assumed to b		ned to be humid, air from a _	area is
j.	As a general rule, who	en increas	es we expect temperature to	o decrease.
	The word is sh, or round like a ciga		omething is round like a ball,	and not round like a
١.	Measurement from th	e surface upward is	called height,	
	measurement from se	a level upward is cal	led .	
m		Since the earth is in	merica are two separate, on the shape of a, on the shape of a, or the shape of a	

II. SENTENCE PRACTICE: Oral Exercises

NOTE: When we talk about events that occur in the same way each

time that they occur, or when we talk about things that are normally or generally true, we often use sentences with the words "when" or "if." In this kind of sentence "when" and "if" have approximately the same meaning. Compare the two example sentences that state "water freezes at 0°c."

- (1) When the temperature falls below zero degrees centigrade, water freezes.
- (2) If the temperature falls below zero degrees centigrade, water freezes.
- 1. Use the information given to make "if" sentences as shown below.

Examples:

Information: Winter/Northern Hemisphere.

Say: "If it is winter in the northern hemisphere, it is summer

. in the southern hemisphere."

Information: Winter/Southern Hemisphere.

Say: "If it is winter in the southern hemisphere, it is summer in the northern hemisphere."

Information:
a. Spring/Northern Hemisphere
b. Summer/Northern Hemisphere
c. Fall/Northern Hemisphere
d. Winter/Northern Hemisphere
e.Spring/Southern Hemisphere
f.Summer/Southern Hemisphere
g.Fall/Southern Hemisphere
h. Winter/Southern Hemisphere
2. Use the information given to make "if" sentences as shown below.
Examples:
Information: West Say: "If the wind blows from the west, it is called a west wind."
Information: East Say: "If the wind blows from the east, it is called an east wind."
Information:
a. North
b. Northeast
c. East

d.	Sou	theast
e. 	Sou	uth
f.	Sou	thwest
g.	Wes	st
h. -	Nor	thwest
3.	Use	the information given to make "if" sentences as shown below.
	Exa	mples:
	Info	ormation: Strong Winds/Rain.
	Say	: "If strong winds and rain are combined, we say it is a
		rainstorm."
	Info	ormation: Strong Winds/Dust.
	Say	: "If strong winds and dust are combined, we say it is a
		dust storm."
	Info	ormation:
	a. S	Strong Winds/Ice
	– b.	Strong Winds/Hail
	C.	Strong Winds/Sand
	d.	Strong Winds/Snow
	e.	Strong Winds/Sleet
	f.	Strong Winds/Rain
		

g. Strong Winds/Dust	_
h. Strong Winds/Thunder	_
	_
4. Use the information given to make "if" sentences as shown below.	
Examples:	
Information: In the Mountains/Cool.	
Say: "If a town is located in the mountains, it probably has a cool climate."	
Information: Near a Sea/Humid	
Say: "If a town is located near a sea, it probably has a humid climate."	
Information:	
a. Near a Desert/Dry	
b. Near the Equator/Hot	
c. Near a Polar Zone/Cold	
d. Near the Sea/Maritime	
e. Near a Tropical Sea/Warm-Humid	
f. Near a Tropical Desert/Hot-Dry	
g. Near a Northern Sea/Cool-Humid	

h. Near a Northern Desert/Cool-Dry		
· -		

III. VOCABULARY EXPANSION: Oral Exercises

NOTE: Once you learn one form of a word, ex. verb: to heat, you should learn to recognize and understand the other forms as they usually contain the same basic meaning.

EXAMPLE: Verb: to heat, i.e., The sun heats the air.

Noun: heat, i.e., Deserts have a dry heat.

Noun: heaters, i.e., Small electric heaters are cheap.

Adjective: heating, i.e., Many houses have central heating systems.

Adjective: heated, i.e., The heated air expands and rises.

Abbreviations: Noun = n. Verb = v. Adjective = adj. Adverb = adv.

Use the correct forms of the words listed to complete the following sentences. Some of the words may be used more than once.

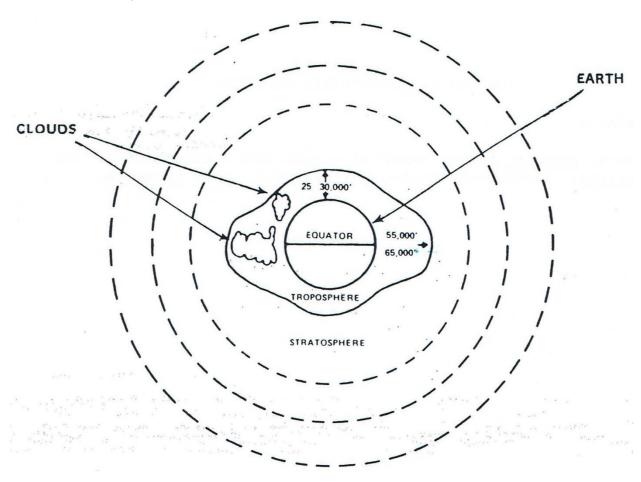
a.			angle(d), v. me to the inters		-	l that	to the right.
	2) \	We learned h	ow to measure		i	n school.	
	3) [During one pa	art of the year t	he northern	hemisph	ere is	toward the sun.
	4) 7	The road goes	s up the mount	ain in a serie	es of		turns.
b.	CO	ol(ed), v.	cooling, ad	j. co	ooled, ad	j.	
	CO	oler, n.	coolly, adv.	C	ool (er) (e	est), adj.	
	1)	This	will keep	soft drinks	cold for a	about three I	nours.
	2)	In this sectio	on of the countr	У		_weather be	gins in September.
	3)	I'll have to w	vait until the co	ffee		before I can	drink it.
	4)	A lot of cars	don't use wate	r, they have	e air		engines.
	5)	Our classroo	oms were very l	not last weel	k, the cer	ntral	system was

6)	The electric motor w	,then it got hot and began	
	to smoke.		
7)	Every night about nii	ne o'clock we get a	wind from the north.
8)	This is the	day we have h	nd in a long time.
C.	divide (ed), v.	division(s), n.	divided, adj.
	dividing, adj.	divider(s), n.	
1)	It is useful to	the earth's s	urface into five temperature zones.
2)	It is much safer to dr	ive on a	highway than to drive on one that has two-
	way traffic. The of t	he year into four seas	ons
3)	Theo	f the year into four se	asons is more accurate in the temperate zones
4)	The line	e between the two he	mispheres is the equator.
5)	You can buy noteboo	oks that have colored	that separate them into
	three or four section	IS.	
6)	He t	ne class into two grou	ps, those who did well on the test, and those
	who didn't. Guess wh	nat I wa	s in.

PHOI	NETIC ALPHABET		Fig 1
ALFA	NOVEMBER (NO <u>VEM</u> BER)	WUN	
BRAVO (BRAH-VOH)	OSCAR (OSS CAH)	Т00	
CHARLIE (CHAR LEE)	PAPA (PAH <u>PAH</u>)	THUH-REE	
DELTA (DELL TAH)	QUEBEC (KEHBECK)	FO-WER	
ECHO (ECK OH)	ROMEO (ROW ME OH)	FI-YIV	
FOXTROT (FOKS TROT)	SIERRA (SEE AIR RAH)	SIX	
GOLF	TANGO (TANG GO)	SEVEN	
HOTEL (HOH TELL)	UNIFORM (YOU NEE FORM)	ATE	
INDIA (IN DEE AH)	VICTOR (<u>VIK</u> TAH)	NINER	
 JULIETT (JEW LEE ETT)	WHISKEY (WISS KEY)	ZERO	
 KILO (KEY-LOH)	XRAY (ECKS <u>RAY</u>)		
LIMA (LEE-MAH)	YANKEE THOUSAND (YANG KEY)		
MIKE	ZULU (ZOO LOO)		ě

UNIT 2

Weather Causes (1)


SECTION 1. ATMOSPHERE

1. General

This study of weather causes is not a complete course in meteorology. It is a review of basic meteorology, and provides you with sufficient knowledge to effectively use weather information. It covers atmospheric properties, the structure of the atmosphere, atmospheric processes, and weather-producing systems.

2. Layers

The atmosphere is divided into five layers with each layer having certain features. For our purpose we will talk about the <u>troposphere</u> and the <u>stratosphere</u>, since most aircraft flights occur in those layers.

Vertical structure of the atmosphere showing one division into layers or spheres based on temperature.

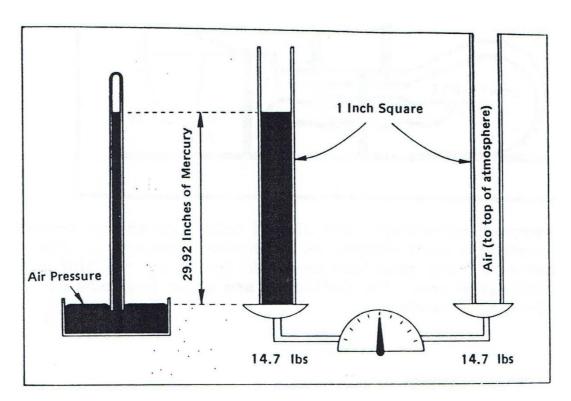
Figure 1

3. Troposphere

The troposphere is the layer of air that begins at the surface of the earth and extends upward to an <u>average</u> altitude of 7 miles. Its height varies from the equator to the poles, and from season to season. It is higher over the equator than over the poles, and it also has a greater height in the summer. The <u>troposphere</u> contains about three quarters (75%) of the earth's atmosphere by weight and almost all of the weather. The border between the troposphere and the stratosphere is called the tropopause. It is important because high-speed winds are often found near the tropopause. I

4. Stratosphere

The stratosphere is the layer just above the tropopause. The stratosphere begins (base) at an average height of seven miles and extends upward to an average height of 22 miles (top). The <u>characteristics</u> of the layer are a slight increase of temperature with height and almost no humidity. Occasionally, however, a strong thunderstorm in the troposphere will cross the tropopause and enter into the lower stratosphere.

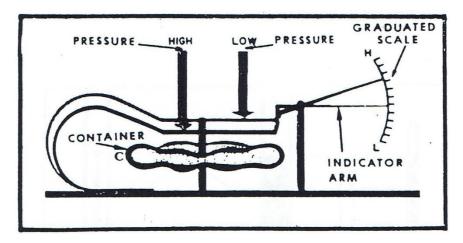

SECTION 2. ATMOSPHERIC PRESSURE

1. Pressure

Atmospheric <u>pressure</u> is the amount of weight that a column of air has on an <u>object</u>. Atmospheric pressure is measured with a barometer.

2. Mercurial Barometer

A <u>mercurial</u> barometer uses a column of mercury in a glass tube to measure the weight of the atmosphere. The height of the column of mercury in the tube changes as the weight of the atmosphere changes. If the atmospheric pressure increases, the mercury will rise higher in the tube; if the atmospheric pressure decreases, the mercury will move downward in the tube. The height of the mercury in the tube is measured in inches. This height, measured in inches, is used as a measurement of atmospheric pressures.


At the left: A mercurial barometer showing air pressure supporting a column of mercury 29.92 inches high in the barometer tube.

At the right: A scale showing that the weight of a 29.92 inch high column of mercury, one inch square, is the same weight as a column of air one inch square that extends to the top of the atmosphere.

Figure 2

3. Aneroid Barometer

An <u>aneroid barometer</u> uses a closed hollow container, partially emptied of air, to measure atmospheric pressure. The container is sensitive to differences in atmospheric pressure; when pressure increases the container is slightly compressed, when pressure decreases the container expands slightly. The hollow container is connected to an arm that indicates the pressure on a graduated scale. The aneroid barometer is smaller and easier to move around than a mercurial barometer, but generally it is less accurate and more likely to need adjustment. When it is used for official measurements it must be checked by comparing it with a mercurial barometer at least once a week.

The aneroid barometer. The closed hollow container expands and contracts with changes in atmospheric pressure. The movements of the container are made. larger by the link to the indicator arm. The indicator arm shows pressure on the graduated scale.

Figure 3

4. Conversion To Sea Level Pressure

If all weather stations were at the same elevations, barometer readings for each station's location marked on a weather map would give a correct record of the atmospheric pressures all over the map. However, pressure decreases with height at the rate of approximately one inch of mercury per thousand feet in the lower few thousand feet of the atmosphere. (The rate of decrease is greater in colder air.) Since the stations that report pressure have a wide range of elevations the barometer readings must be converted to sea level pressures so that they will only show the difference in air pressure that is not related to elevation. There conversion shows what the pressure would be if the station were at sea level. This makes the pressure on weather maps and reports more useful and more meaningful.

5. Conversion To Millibars

After the barometer pressure reading is converted to what it would be at sea level, it is changed to <u>millibars</u>, as millibars are the units of atmospheric pressure measurement that are used on weather maps. When the pressures at the different stations are compared, it is possible to determine many factors that indicate the trend of weather conditions.

6. Altimeter

The <u>altimeter</u> is a type of aneroid barometer that shows the pressure reading as feet of altitude or elevation. An altimeter reading is most accurate in showing actual true altitude when it is on or near the airport from which the altimeter <u>setting</u> has been obtained. An altimeter is <u>set</u> by adjusting it to show local differences in atmospheric pressure. When an accurate altimeter has been <u>set</u> to the local pressure, it will read the airport's elevation when it is on the surface of the airport.

SECTION 3. TEMPERATURE

1. Temperature Distribution

Two temperature scales are commonly used in communicating weather information--Fahrenheit (F) and Celsius/centigrade (C). The freezing point of water is 32° on the Fahrenheit scale (32°F) and zero on the Celsius scale (0°C). Water <u>boils</u> at 212°F, or 100°C when it is at sea level.

2. Lapse Rate

Temperature normally decreases with increasing altitude in the lower 30 to 40 thousand feet of the atmosphere. This decrease in temperature with an increase in height is defined as the lapse rate. A standard lapse rate is approximately 2°C per thousand feet.

3. Inversion/Inversion Layer

An <u>inversion</u> is an abnormal increase of the temperature of the atmosphere with height. An <u>inversion layer</u> is a layer of air that shows inversion characteristics.

4. Isothermal Layer

An isothermal layer is a layer in which temperature does not change with height.

SECTION 4. STANDARD ATMOSPHERE

1. Characteristics

Several general characteristics of the atmosphere have already been mentioned, but in order to measure a change from normal, we have to establish a standard for a "normal" atmosphere. Conditions through the world for all areas and all seasons have been averaged to determine:

- a. a surface temperature of 59°F (15°C) at sea level
- b. a surface pressure of 29.92 inches of mercury (1013.2 millibars) or 14.7 pounds per square inch at sea level
- c. a lapse rate (decrease of temperature with height) in the troposphere of approximately 2°C per thousand feet
 - d. a tropopause of approximately 36,000 feet
 - e. a temperature at the tropopause of -55°c

GLOSSARY

ALTIMETER: noun: an instrument used to measure altitude

Ex. The altimeter showed that the plane was at 10,000 ft.

Note: alti (high) + meter (measuring instrument)

ANEROID BAROMETER: noun; a type of barometer that does not use

liquid to measure pressure

Ex. He used an <u>aneroid barometer</u> because it was smaller and easier to move from place to place.

AVERAGE: noun; the total of a column of figures, divided by the

number of items in the column. Also the total length, cost, weight, etc., of a group of items divided by the number of items

Ex. The average of 4, 5, and 9 is 6.

Ex. The average height of the three men was 5 feet, 8 inches.

BAROMETER: noun; an instrument used to measure atmospheric pressure

Ex. The weather station has two types of barometers.

Note: baro (pressure/weight) + meter (measuring instrument)

BOIL: verb; to use heat to change water to steam

Ex. He <u>boiled</u> water to make tea.

Ex. Water boils at 100°c

.CHARACTERISTIC(S): noun; the feature or features that identify one

thing as being different from another thing

Ex. A characteristic of an inversion is that the temperature increases with height.

CONVERT: verb; to change one thing into another thing

Ex. Inches can be converted to centimeters by multiplying the inches by 2.54.

CONVERSION: the noun form of convert

DETERMINE: verb; to find out or to identify

Ex. The pilot uses his altimeter to determine his altitude.

INVERSION LAYER: noun; a layer of the atmosphere in which temperatures

increase with height

Ex. The air temperature is increasing, we must be climbing through an <u>inversion layer</u>.

Note: Inversion = noun form of verb "invert," to turn over.

ISOTHERMAL LAYER: noun; a layer of air in which the temperature does

not change with height

Ex. We have climbed 2,000 feet without having any change in the

air temperature; we must be in an isothermal layer.

Note: iso (equal) + thermal (heat)

LAPSE RATE: noun; the rate of temperature decreases as altitude increases

Ex. The normal <u>lapse rate</u> is a decrease of 2°C with each increase of 1,000 feet.

MERCURIAL: adjective form of mercury (chemical symbol Hg)

METEOROLOGY: noun; the science that studies the atmosphere and weather

Ex. You have to study meteorology before you can be a weatherman.

MILLIBAR: noun; a unit used to measure atmospheric pressure shown on a

barometer. 34 millibars = 1 inch of mercury

Ex. Barometer pressures can be reported as inches of mercury or as millibars.

OBJECT: noun; a thing

Ex. What are those three objects on the desk?

PRESSURE: noun; the amount of weight on a surface, divided by the

area of the surface. Pressure is usually measured in pounds per square inch (PSI) or kilograms per square centimeter (Kg per c?)

Ex. Check the <u>pressure</u> in the tire to be sure that it is not more than 32 PSI.

PROCESSES: noun; a series of changes that produce a particular result

Ex. The atmosphere must go through a number of <u>processes</u> before clear weather becomes cloudy, rainy weather.

PROPERTIES: noun; the particular characteristics of a material

Ex. Some of the <u>properties</u> of water are that between 0° and 100°c, it is a liquid; below 0°c it freezes to a solid; and above 100°C it becomes a gas.

SET: verb; to adjust an instrument to a standard

Ex. Do you have the correct time? I want to set my watch.

SETTING: noun; a particular adjustment

Ex. What setting do I use on my radio to receive the weather reports?

STRATOSPHERE: noun; the layer of atmosphere that starts at approximately

7. miles and extends to 22 miles in altitude

Ex. Many modern aircraft are capable of flying so high that they fly in the stratosphere.

Note: strato + sphere.

STRUCTURE: noun; the order of parts or the construction of a thing

Ex. Each of the five layers that make up the <u>structure</u> of the atmosphere has a name.

TROPOPAUSE: noun; the name of the border between the stratosphere and the troposphere

Ex. Clouds do not usually rise high enough to cross the <u>tropopause</u>.

Note: tropo (change) + pause (stop)

TROPOSPHERE: noun; the name of the layer of the atmosphere that begins at the surface of the earth and extends upward approximately seven miles

Ex. Almost all of the changes we call weather occur in the <u>troposphere</u>. Note: tropo (change) + sphere

Language Exercises

	—				_		
ı	$NIL \setminus M$	ILDI	// I N I / N I	()(-)(-)	()ra	Exercise	\sim
ı	$IM \Gamma VV$	-1 Γ Γ Γ Γ	ひけけなしカ	CATE.	Ола	LEXELLIS	>

1. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces.

	meteorology	process		average			
	property t	roposphere		tropopause			
	tructure	stratospher	e				
a.	Do you know much about theevaporated water in the air?		of clouds b	peing formed from			
b.	'	rair	fall is less t	han five inches per year			
C.	and the second s	the troposph	nere. You w				
d.	I saw a picture showing the of the atmosphere; it showed five different layers of air, one above the other.						
e.	Almost everyone knows some of the of water; it freezes at 0°C and boils at 100°c.						
	The layer of air closest to the ground is the I wanted to know more about weather so I bought a book on When you go from the troposphere to the stratosphere, you cross the						
i.	It is easy to understand theseries of transparent balls; a larg smaller one inside that one, and	e one, then a so on.	smaller on	ne inside it, then an even			
j.	The layer above the tropopause is called the						
k.	Theheight of the tro	pposphere is	7 miles; act	ually it is higher at the			
l.	equator than at the poles. Most of what we call weather or	curs in the tr	onosnhere	· occasionally a storm wil			
1.	Most of what we call weather occurs in the troposphere; occasionally a storm will enter the						
m.	The of ice changing	g to water is	called "mel	ting."			
	The atmosphere has several						
	temperature and pressure change with height.						

2. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces. characteristic barometer convert pressure mercurial conversion object aneroid barometer a. If you know the elevation, it isn't difficult to _____ the barometer reading to sea level pressure. b. I guess we would say this is a thermometer; it has mercury in it. c. One of the _____ of the atmosphere is that it is mainly composed of oxygen and nitrogen. d. In some countries standard sea level ______ is called "one atmos;" it is probably an abbreviation for one atmosphere. e. When we want to find the length of an we measure it; when we want to know the _____ weight, we weigh it. f. f. One way to remember the difference between the two types of barometers is that the _____ _ ___ is made from metal. g. The _____ of pounds to kilograms is not difficult; one kilogram equals 2.2 pounds. h. The _____ of the atmosphere decreases as we go higher. i. A thermometer is used to measure any temperature, but a is only used to measure atmospheric pressure. j. We have to know the standard atmospheric ______ that we can compare the day-to-day changes. k. The barometer uses two fluids to measure pressure, one is the gas "air," the other is a liquid metal. I. The liquid "water" can be ______ to the solid "ice" by freezing. m. Since the measures pressure mechanically, it should be checked about once a week with the other type. n. If your mercurial barometer

has two scales, one in millibars: and the other in inches, there is no need to make

the _____ from one to the other; you can read it directly.

3.	Sel	Select words from the list below to complete the following sentences. Some of the						
	WO	words may be used more than once, and you may have to make the word plural or						
	cha	ange the tense. D	o not try to write the	words in the spaces.				
		altimeter	inversion layer	set				
		boil	isothermal layer	setting				
		determine	lapse rate					
	a.	Do you have the	correct time? I want t	o my watch.				
	b.	If you are at sea level, you can expect water to at 100°						
	C.	. An altimeter uses a unit like an aneroid barometer to height.						
	d.	d. If you know that the standard is 2°c per thousand feet,						
		you know why temperatures are cooler in the mountains.						
	e.	e. If the temperature begins to increase as you go higher, you are probably in an						
	f.	f. Pilots use an to find out how high they are flying.						
	g.	g. Since pressure changes from day to day, and from place to place, the altimeter						
		has to be changed to show local pressure at each						
		airfield.						
	h.	I wish you would	change the	on that alarm clock;	it wakes us up 10			
		minutes too early	-		·			
	i.	i. The temperature is staying the same, but the altimeter shows we have gone up						
		2,000 feet; that is a sure characteristic of an						
	j.	j. Isothermal layers and inversion layers are easy to identify because they don't						
		follow the standa	ard	; one reverses	it, the other just			
		doesn't change.						
	k.	k. One reason a pilot is told the local pressure is so he can his altimeter.						
	I.	When water	at 100°c, it	is changing from a liquid	to a gas.			
	m.	There is no easy	way to a	atmospheric pressure with	nout a barometer.			
	n.	If there is hot air	above cool air, it will k	pe called an				

II. SENTENCE PRACTICE: Oral Exercises

NOTE: When we talk about the location of things, we tend to use the same type of sentence and only change the names of the things we are describing.

1. Use the information given to make location sentences as shown below:

Examples:

Information: Northern Hemisphere: Equator/North Pole.

Say: "The northern hemisphere extends from the equator to the north pole."

Information: Troposphere: Surface of the Earth/ Approximately 7 Miles Up.

Say: "The troposphere extends from the surface of the earth to approximately 7 miles up."

ormation: Northern Temperate Zone: Tropical Zone/Northern Polar Zone.
Northern Polar Zone: Northern Temperate Zone/North Pole.
Tropical Zone: 1600 Miles North of the Equator/1600 Miles South of the Equator.
Southern Temperate Zone: Tropical Zone/Southern Polar Zone.
Southern Polar Zone: Southern Temperate Zone/ South Pole.
Northern Hemisphere: Equator/North Pole.
Southern Hemisphere: Equator/South Pole.
Troposphere: Surface of the Earth/Approximately 7 Miles Up.
Stratosphere: Tropopause/Approximately 22 Miles Up.
Isothermal Layer: About 8,000 Feet/About 9300 Feet.

k.	Inversion Layer: About 4500 Feet/About 6,000 Feet.
1.	Atmosphere: Surface of the Earth/More than 600 Miles Up.
m.	Maritime Zone: Ocean/About 25 Miles Inward from the Ocean.
n.	Standard Lapse Rate Area: Sea Level/About 30 to 40 Thousand Feet.
Ο.	Rainstorms: 20 Miles Northeast of Here/30 Southwest.
p.	North African Desert: Morocco/Egypt.

Most long sentences are combinations of smaller sentences. One of the NOTE: most common kinds of long sentences occurs when "and" is used to combine sentences so that the speaker doesn't have to repeat phrases that occur in both sentences. Compare the sentences below.

EXAMPLES:

here's varies

		heigh	oposphere's height varies from the equator to the poles. <u>The troposport varies</u> from season to season. (combined) <u>The troposphere's height</u> the equator to the poles <u>and</u> from season to season.			
2.	U	se the info	rmation given to make combined sentences as shown below.			
	In	formation:	The troposphere contains 75% of the atmosphere by weight.			
			The troposphere contains almost all of the weather.			
Com		ombined:	he troposphere contains 75% of the atmosphere by			
			weight <u>and</u> almost all the weather.			
	Information		The tropical zone extends 1600 miles north of the equator.			
			The tropical zone extends 1600 miles south of the equator.			
Combined:		ombined:	The tropical zone extends 1600 miles north and south of the equator			
	Inf	ormation:				
	a.	Each part	of the earth has one "day" period every 24 hours.			
		Each part	of the earth has one "night" period every 24 hours.			
b.		·	on is a review of basic meteorology.			
		This sectio	<u>n is a review</u> of weather terminology.			
	C.	·	sphere is the layer of air that begins at the surface of the earth.			
		The tropos	sphere is the layer of air that extends upward about 7 miles.			
						
	d.	·	sphere begins above the troposphere.			
		The strato	sphere extends upward to a height of 22 miles.			

(e. Occasionally a strong thunderstorm will cross the tropopause.
	Occasionally a strong thunderstorm will enter the stratosphere.
f.	The aneroid barometer is smaller than a mercurial barometer.
	The aneroid barometer is easier to move around than a mercurial barometer.
g.	The freezing point of water is 32° on the Fahrenheit scale.
	The freezing point of water is 0° on the Celsius scale.
h.	Inversion layers do not show the standard lapse rate.
	Isothermal layers <u>do not show the standard lapse rate</u> .
l.	Aneroid barometers <u>are used to measure atmospheric pressure</u> .
	Mercurial barometers <u>are used to measure atmospheric pressure</u> .
j.	Temperature <u>decreases with height</u> .
	Pressure <u>decreases with height</u> .
k.	Areas in the temperate zones tend to have warm or hot summers.
	Areas in the temperate zones tend to have cool or cold winters.
l.	The mercury rises in the tube when the atmospheric pressure increases.
	The mercury falls in the tube when the atmospheric pressure decreases. (use two "and's," one in each phrase)

m.	The container expands when the pressure decreases.
	The container contracts when the pressure increases. (use two "and's")

 VOCABULARY EXPANSION: Oral Exercises NOTE: Many words in English have a noun form and a verb form; there is usually very little difference in the basic meaning Directions: (1) Read the sentence out loud. (2) Say the verb form of the underlined noun. (3) Make and say a simple, related sentence using the verb fo same basic meaning. Example: Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes evaporated" etc. 	
there is usually very little difference in the basic meaning Directions: (1) Read the sentence out loud. (2) Say the verb form of the underlined noun. (3) Make and say a simple, related sentence using the verb for same basic meaning. Example: Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes	
Directions: (1) Read the sentence out loud. (2) Say the verb form of the underlined noun. (3) Make and say a simple, related sentence using the verb for same basic meaning. Example: Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes	
 (1) Read the sentence out loud. (2) Say the verb form of the underlined noun. (3) Make and say a simple, related sentence using the verb for same basic meaning. Example: Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes 	
 (2) Say the verb form of the underlined noun. (3) Make and say a simple, related sentence using the verb for same basic meaning. Example: Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes 	
Read: The clothes dried by evaporation. Say: "evaporate" Say: "The water evaporated" or "The water in the clothes	rm with the
Say: "evaporate" Say: "The water evaporated" or "The water in the clothes	
Say: "The water evaporated" or "The water in the clothes	
evaporated" etc.	
a. You will have to make a <u>correction</u> in the spelling.	
b. The <u>contraction</u> is caused by increased pressure.	
c. The rotation of the earth produces day and night	
d. Radiation from the sun reaches the earth	
e. The location of a region is a factor in the climate.	
f. The tube has graduations to show the height of the mercury	
g. There is a relation between altitude and pressure.	
h. The <u>conversion</u> from inches to millibars is not difficult	
i. There is no <u>indication</u> that the pressure has changed.	

j. The <u>division</u> of the atmosphere's structure into five layers is useful. _____

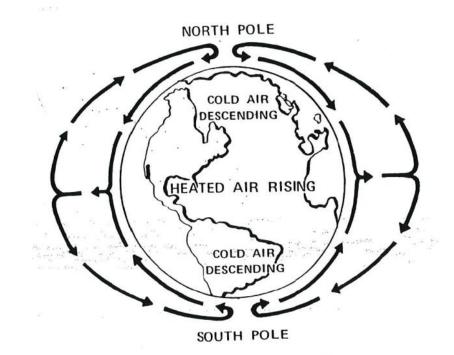
k.	The <u>compression</u> of the container causes the indicator arm to move.
1.	When the <u>elevation</u> of the barometer is changed, the pressure reading will change.
m.	You can make adjustments in the aneroid barometer so that it agrees with the mercurial barometer.
n.	The altimeter will show upward and downward movements of the aircraft
0.	The measurement of atmospheric pressure is accomplished every hour.

UNIT 3

Weather Causes (2)

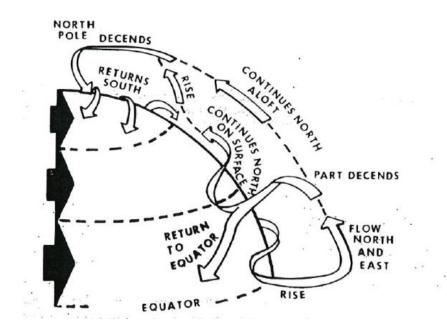
SECTION 5. CIRCULATION

1. Basic Circulation


The atmosphere tends to maintain an equal pressure over the entire earth just as the ocean tends to maintain a <u>constant</u> level. Whenever the <u>equilibrium</u> is disturbed, air begins to flow from areas of higher pressure to areas of lower pressure.

2. Causes of Atmospheric Circulation

a. The factor that disturbs the normal equilibrium is the uneven At the equator, heating of the earth. the earth receives more heat than in areas to the north and south. This heat is transferred to the Thus The atmosphere, warming the air and causing it to expand and rise. expansion caused by the warming lowers the density of the air. an area of low pressure is produced at the equator. The air at the poles is cold. Cooling causes air to contract cooler, (become denser) and sink to the surface. This heavier, denser air from the north and south moves along the earth's surface toward the equator to equalize the pressure. This air also becomes warm and rises, thereby establishing a constant circulation. On a non-rotating earth this circulation would consist of two circular paths, one in each hemisphere, followed by the air rising at the equator, traveling aloft toward the poles, and returning along the earth's surface to the equator.


Figure 1

Circulation
as it would be
on a non-rotating
earth. Intense
heating at the
equator lowers the
density. Denser air
at the poles flows
toward the equator
forcing the less
dense air upward
where it flows aloft
toward the poles.

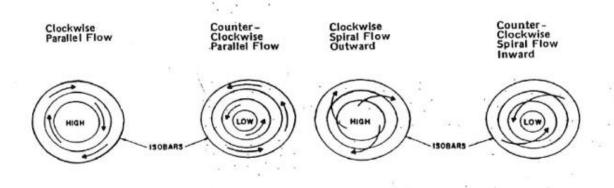
b. The form of circulation that would occur in theory (as shown in figure 1) is greatly modified by many forces, one being the rotation of the earth. In the northern hemisphere, this rotation causes air to In the southern hemisphere, air flow to the right of its normal path. This action caused by the earth's flows to the left of its normal path. We will only rotation is called the <u>Coriolis force</u>. talk about the movement of the air in the northern hemisphere.

C. As the air rises and moves northward from the equator, it is <u>deflected</u> toward the east, and by the time it has traveled about a third of the distance to the pole it is no longer moving northward, but eastward. This causes the air to accumulate in a belt and creates an area of high pressure. Some of this air is then forced down to the th's surface, where part flows southward, returning to th and part flows northward along the surface. The remaining portion of s air aloft continues its journey northward. As it moves it is cooled, and finally <u>descends</u> near the pole, where it begins a return trip to the equator. Before it moves very far southward it comes <u>conflict</u> with the warmer air, that had descended in the fi and flowed northward on the surface. The warmer air moves up over the air and continues northward, producing an accumulation hemisphere. the northern part of the As it becomes cooled and denser, it flows southward.

The general circulation. The Coriolis force deflects high level winds from the south to the east. Low level north Between winds from the pole are deflected to the west. these two movements is a large mixing zone. The warm air masses slide over the cold air masses as t they migrate between the equator and the poles.

d. Additional complications in the general circulation of the air are brought about by: the irregular distribution of oceans and continents, the difference in how different surfaces transfer heat to the atmosphere, the daily variation in temperature, the seasonal changes, and many other factors. The general flow of weather in the United States is from northwest to southeast.

3. Lows


Regions of low pressures develop where air lies over land or water surfaces that are warmer than the surrounding areas. Lows form over the desert southwest of the United States during the summer months.

4. Highs

Regions of high pressure develop where the air lies over surfaces that are cooler than the surrounding areas, such as polar regions, and where air traveling from the equator to the poles is forced to descend.

5. Wind Patterns

Wind flows from high pressure to low pressure. In the northern hemisphere Air wind is deflected to the right of its path by the earth's rotation. moving outward from a "high" flows in a clockwise spiral around the "high" center; and air moving into a "low" flows in a counterclockwise spiral around the "low" center.

Flow of air around a highand low-pressure area in the northern hemisphere above the surface.

Flow of air around a highand low-pressure area in the northern hemisphere at the surface.

Figure 3

6. Isobars

The pressure at each statton is marked on the weather map and lines called <u>Isobars</u> are drawn to connect the points of equal pressure. Many of these lines make complete circles and surround areas marked H (high) or L (10w). Isobars are similar to the lines that are drawn on regular surface maps to show elevation. However, instead of indicating the elevation of terrain and the steepness of slopes, Isobars indicate the amount of pressure and steepness of <u>pressure gradients</u>. If the <u>gradient</u> (slope) is steep, the isobars will be close together, s and the wind will be strong. If the is gradual, the Isobars will be far apart, and the win light. Isobars provide useful information about the winds aloft. Close ith, wind direction is modified by the terrain over ses, and wind speed is reduced by friction with The At tudes two or three thousand feet above the surface, however Is greater and the direction is usually parallel to the isobars.

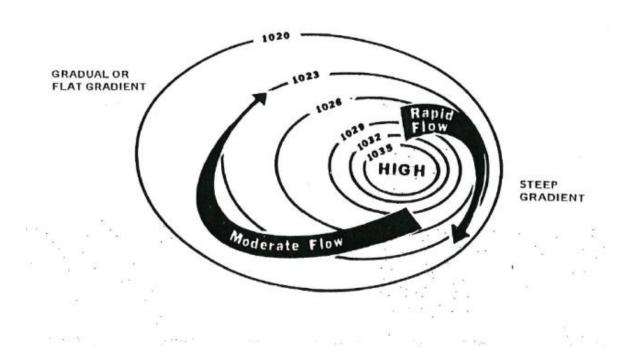
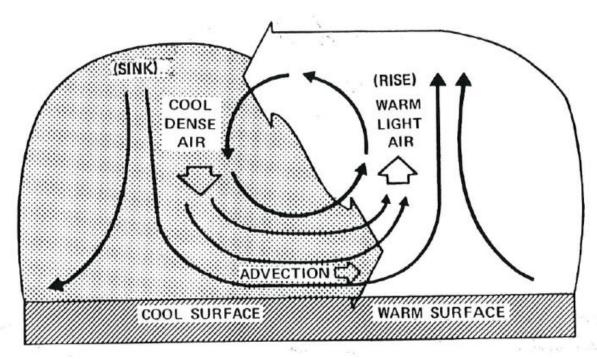
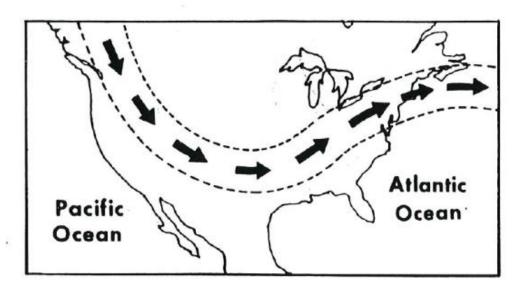



Figure 4

7. Convection Currents

a. When two bodies of air next to each other are heated unequally, the warmer air expands and becomes lighter or less dense than the surrounding cool air. The denser air is drawn to the ground by its greater weight and 1ifts or forces the warm air upward. The flow parallel to the ground between the two bodies is called <u>advection</u>

Convection current as a result of unequal heating of the atmosphere by different surface temperatures. Cold air sinks forcing warm air upward. The horizontal flow in a convection current is usually called <u>advection</u>.


Figure 5

b. These convection <u>currents</u> cause small-size wind systems that occur within the larger overall system of circulation. These systems may influence local weather and be small enough to <u>affect</u> only one airport, or large enough to affect an area of several thousand square miles. But they do not include the large high- and low-pressure systems called migratory highs and lows that migrate from one area of the earth to another.

8. Jet Stream

The <u>jet stream</u> is a narrow, high-speed, river of wind that moves at a shigh altitude around the-earth. It does not flow directly in a straightpath, and it may not always be a continuous flow. It moves through the normal wind patterns aloft. Wind speeds in the jet stream range from

100 to 150 knots, and occasionally they may be as much as 200 to 250 knots. A well-developed jet stream normally varies from 1,000 to 3,000 miles in length, 100 to 400 miles in width, and from 3,000 to 7,000 feet from top to bottom.

Jet stream flow across the United States in the winter.

Figure 6

SECTION 6. AIR MASSES

1. General

- a. The various <u>air masses</u> take on the temperature and moisture characteristics of the areas in which they are formed--the coldness of the polar regions, the heat of the tropics, the moisture of the oceans, and the dryness of continents.
- b. As they move away from their source regions and pass over land and sea, air masses are constantly being modified through heating or cooling from below, rising or descending or gaining or losing moisture. In general, however, they keep their original characteristics and can be recognized and identified as they move over the surface of the earth.

2. Movement of Air Masses

Since the general movement of the atmosphere in the United States is toward the east, the polar and <u>arctic</u> air masses generally move toward the south- east, and the tropical and <u>equatorial</u> air masses move toward the northeast. The speed varies according to the season and the type of the air mass, but Cold air masses move it generally averages from 500 to 700 miles a day. a little more rapidly than warm air masses

GLOSSARY

ADVECTION: noun; the horizontal flow of air between two bodies of air which have different temperatures

Ex. This is a local wind caused by advection.

AFFECT: verb; to produce a change

Ex. This bad weather will affect our travel plans.

AIR MASS: noun; a large body of air that has the same temperature and humidity characteristics

Ex. A continental <u>air mass</u> is usually dry.

ALOFT: adjective; above the ground, in the air

Ex. The winds aloft at 5,000 feet are much stronger than they are here on the surface.

ARCTIC: noun; the ice covered area at the north pole.

Ex. It is unusual for temperatures in the Arctic to be above freezing

CIRCULATION: noun; a regular movement that follows a circular path and returns to the starting place

Ex. There is a general <u>circulation</u> of air from the equator to the poles and back again.

CONFLICT: noun; the condition that results when one force meets and opposes another force

Ex. In this area there is a <u>conflict</u> between warm air masses moving northward and cold air masses moving southward.

CONSTANT: adjective; continually the same

Ex. The mercury in the barometer doesn't have a <u>constant</u> height because the pressure changes daily.

CONVECTION: noun; the circulation of air between two air masses that have different temperatures

Ex. This air movement is caused by <u>convection</u>.

CORIOLIS FORCE: noun; the force produced by the rotation of the earth

Ex. The Coriolis force causes the air to flow to the right.

COUNTERCLOCKWISE: adjective; opposite of clockwise.

Ex. Air moving into a "low" flows in a <u>counterclockwise</u> spiral around the "low" center.

CURRENT: noun; a movement of air (or water) through a mass of air (or water)

Ex. Don't swim in this part of the river, the current is too strong.

Ex. Convection is producing a strong current of air in this area.

DEFLECT: verb; to turn to a different direction

Ex. The warm air is deflected upward when it meets the cold air on the surface.

DENSE: ajective; close together. The property that makes some heavier than other objects that are the same size

Ex. When air is cooled it contracts and becomes dense; this causes it to sink.

DENSITY: noun form of dense. dense + (-ity)

DESCEND: verb; to go downward

Ex. A lot of accidents happen when people are <u>descending</u> stairs in a hurry.

EQUALIZE: verb form of equal. equal + (-ize)

EQUATORIAL: adjective form of equator. equator + (-ial)

EQUILIBRIUM: noun; a condition of two things being equal

Ex. There is an <u>equilibrium</u> between the weight of the atmosphere on the mercury outside the barometer tube and the weight of the column of mercury in the tube.

GRADIENT: noun; the rate of change of a measurement that varies by distance

Ex. The isobars are very close together here; the pressure gradient is very steep.

HIGH: noun; an air mass that is characterized by high pressures

Ex. A high is located over northern Canada.

ISOBAR: noun; a line drawn on a weather map to connect areas that have the same pressure Ex. This isobar runs right across the middle of the state.

JET STREAM: noun; a high level, high speed current of air

Ex. The plane made the trip in less time than usual because it was able to fly in the <u>jet stream</u>.

KNOT: noun; a unit of measurement for windspeed or speed. of an aircraft

through the air. 1 knot = approximately 1.15 miles per hour (mph) or 1.85 kilometers per hour

Ex. There is a 15-knot wind blowing from the north.

LOW: noun; an air mass that is characterized by low pressures

Ex. A low is located over the state of Florida.

LIE: verb; to be on an object or surface

Ex. When an air mass lies over a hot area it takes up the heat from the surface.

MIGRATE: verb; to regularly move from one place to another place

Ex. Hot air from the equator migrates toward the poles.

MIGRATORY: adjective form of migrate. migrate + (-ory)

PRESSURE GRADIENT: noun; the gradient that measures pressure by distance

Ex. The <u>pressure gradien</u>t is not very steep here; the isobars are very separated.

SPIRAL: noun; a continuously curved line that follows a decreasing (or increasing) size; a movement of That form

Ex. He walked in a <u>spiral</u>.

TRANSFER: verb; to move from one place (or object) to another place or object.

Ex. Heat is <u>transferred</u> from the surface to the air mass that lies on it.

Language Exercises

I. NEW TERMINOLOGY: Oral Exercises

1.		than once, and	plete the following sentences. Some of the you may have to make the word plural or words in the spaces.	
	constant (-ly)	equalize	dense (-ity) (-er)	
	equilibrium	circulation	Coriolis force	
	transfer equilibrium	aloft	deflect	
a. T	he hot air at the equator ri	ses and flows _	toward the poles.	
b. F	leat from the ground is		to the air that lies over it.	
	he generalnen back again to the equa		's atmosphere is from the equator to the poles	
	n a mercurial barometer then the tube and the weight a		between the weight of the mercury	
e. \	When a warm air mass mee	ets a cold air ma	ss, the warm air is	
ι	upward over the cold air ma	ass.		
	he warm air mass does not	•	northward to the pole, it is deflected to the east	
ϵ			o it sinks and moves on the surface toward the changes	
h. E	ven at sea level the atmosp	heric pressure	is not a 29.92 due to the	
C	circulation of different air m	nasses.		
	ocal pressures are converte levation.	ed to sea level p	ressures to the differences in	
	cubic meter.(1 m3) of cold	air weighs moi	e than a cubic meter- of hot air. The cold air	
	he uneven heating of the e tmosphere.	arth's surface c	auses a circulation of the	
t			tics there will be no flow between them, but if eating, high pressure air will flow to the low-	
m.	m. Since high-pressure air flows toward a low-pressure area, we say that the system tends to pressure difference.			
n.	The theory of circulation of	fair on a rotatir	g earth must consider the deflection caused by	

Descend	high	pressure gradient
Conflict	spiral	gradient
Low	counterclockw	-
lie	isobar	
a. This is a steep road; the20 feet of distance.	is a one-fo	oot increase in elevation for ever
b. The mercury is moving d moving into this area.	lownward in the barome	eter; there must be a
c. If the hands of a watch r		ould say they moved in a
d. If you drew a line on the pressure, you would call		
e. If you start at an altitude and temperature will ind		the pressure
	south meets a warm air se they are moving in op	mass moving north, there is a posite directions.
becaus	se they are moving in op n temperature, we expec	posite directions. t to find at the
g. Due to the differences in poles and	se they are moving in op n temperature, we expec at the eq over an a	posite directions. t to find at the
g. Due to the differences in poles and h. The air masses that and humidity characteris	se they are moving in op n temperature, we expect at the eq over an a stics of that area.	posite directions. It to find at the justor.
g. Due to the differences in poles and h. The air masses that and humidity characteris i. At the surface, wind in a center of the low.	se they are moving in open temperature, we expect at the equation over an astrics of that area. Ilow-pressure system mover and the equation of the distance between map, the	posite directions. It to find at the juator. In area tend to take the temperature wes in a toward the
g. Due to the differences in poles and h. The air masses that and humidity characteris i. At the surface, wind in a center of the low. j. hen you look at a weather steepness of the	se they are moving in open temperature, we expect at the equation over an action of that area. Ilow-pressure system mover map, the distance between the company of the distance between the company of t	posite directions. It to find at the juator. In area tend to take the temperature wes in a toward the
g. Due to the differences in poles and h. The air masses that and humidity characteris i. At the surface, wind in a center of the low. j. hen you look at a weather steepness of the k. There is a going down, the other shift.	se they are moving in open temperature, we expect at the equation over an astics of that area. Illow-pressure system mover map, the distance between the company of the co	posite directions. It to find at the juator. It area tend to take the temperature wes in a toward the ween isobars indicates the
g. Due to the differences in poles and h. The air masses that and humidity characteris i. At the surface, wind in a center of the low. j. hen you look at a weather steepness of the k. There is a going down, the other shall one method of looking for around in smaller and shall contents.	se they are moving in open temperature, we expect at the equation over an actics of that area. Illow-pressure system mover map, the distance between the common of the co	posite directions. It to find at the juator. It area tend to take the temperature wes in a toward the ween isobars indicates the coutside of the area and walk

2. Select words from the list below to complete the following Some of the words may be

	•		te, and you may hat te the words in th	ave to make the wo e spaces.	ord plural or
	Affect	current	arctic		
	Advection	equatorial	migrate (-ory) (-1on)	
	air mass	jet stream			
	convection	knot			
a. Th			nward from the po they are "cold" hi	olar region are calle ghs.	ed
	Ithough there iles an hour.	is a small differ	ence, a 10	wind mov	es at about 10
c. Air	r masses that h	nave their sourc	ce at the equator a	are called	
air	masses; they	are "warm" lov	/S.		
d. Po	lar highs	southward	d; equatorial lows	nort	hward.
e. Wh	en he opened	the window a _	O	f air blew the pape	rs off the desk
f. The	e heating of the	e ground cause	s c	currents to move u	pward.
			curr ne convection curr	ents, move the gro rents.	ound toward
		understanding density of air r		ow how heating and	d cooling
	eth	at move as par	t of the general ci	rculation are know	n as migratory
	upward move sed by heating		at the equator is	an example of	currents
	high currents r masses."	near the tropo	pause, called	, are not co	onsidered to be
l. An	nile is used to	measure distan	ce; a	_ is used to measu	ire speed.
	ctic air masses masses	and equatorial	air masses are go	od examples of	
n. Th	e	of air	masses causes the	e pressure at a stat	ion to change

Select words from the list below to complete the following sentences. Some of the

3.

II. SENTENCE PRACTICE: Oral Exercises

NOTE: Since long sentences are usually combinations of two or more shorter sentences, one of the methods of understanding a very long sentence that is difficult or confusing is to take it apart into shorter sentences.

Compare the sentences below.

Original: The heat is transferred to the atmosphere, warming the air and causing it to expand and rise.

Parts: (1) The heat is transferred to the atmosphere.

- (2)' The heat warms the air.
- (3) a.The heat causes the air to expand.
 - b. The expanded air rises.

Break	the following long sentences into smaller sentence parts as shown in the examples.
Examp	oles:
Origina	al: On a non-rotating earth this circulation would consist of two paths, one in each hemisphere; followed by the air rising at the equator, traveling aloft toward the
	poles, and returning along the earth's surface to the equator;
Say:	(1) "On a non-rotating earth circulation would consist of two paths."
	(2) "There is one path in each hemisphere."
	(3) "The path is followed by the air that rises at the equator."
	(4) "The air travels aloft toward the pol
	(5) "The air returns along the surface to the equator."
Origina	al: As the air rises and moves northward from the equator, it is deflected to the east; and by the time it Has traveled about a third of the distance to the pole, it is no longer moving northward, but eastward.
Say:	(1) the air rises and moves northward from the equator
	(2) "As it moves, it is deflected to the east."
	(3) "After it has traveled a third of the distance to the pole, it's not going northward anymore."
	(4) "After it has traveled a third of the distance the pole, its going eastward."
Origina	al Sentences:
a.	Some of the air is then forced down to the earth's where part flows southward returning to the equator, and part flows northward along the surface.
b.	As it moves northward it is cooled and finally descends near the pole, where it begins a return trip to the equator.
	·———————·

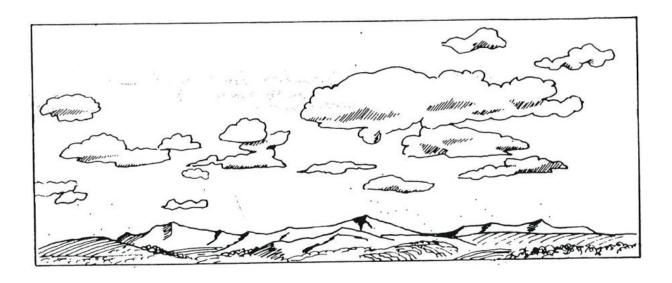
c.	The warmer air moves up over the cold and continues northward, ng an accumulation of air in the northern part hemisphere.
d.	Regions of high pressure develop where the air lies over surfaces that are cooler than surrounding areas, such as polar regions; and where air traveling from the equator to the poles is forced to descend.
2.	Air moving outward from a "high" flows in a clockwise spiral around the 'high" center air moving into a "low" flows in center.
f.	These systems may influence local weather and be small enough to affect only one airport, or large enough to affect an area of several thousand miles.
g.	They do not include large high-: and low-pressure systems called migratory highs and lows that migrate from one area of the earth another.

h.	A well-developed jet stream normally varies from 1,000 to 3,000 miles in length, 100 to 400 miles in width, and from 3,000 to 7,000 feet from top to bottom.		
i.	As air masses move away from their source regions and pass land and sea, they are constantly being modified heating or cooling from below, rising or descending, or gaining or losing moisture.		

III.	VOCABULARY EXPANSION:	Oral Exercises	
	direction." Ex. upward, do	d to many words to give the meaning of "in the wnword, northward, etc. Use words ending in "- owing sentences as shown in the examples.	
	EXAMPLES:		
	Sentence: If you want to s	ee the sun rise, look	
	Say: "If you want to see	the sun rise, look eastward."	
	Sentence: Hot air moves _	·	
	Say: . "Hot air moves upwa	rd."	
SENTE	NCES:		
a. If you trav	/ell	ong enough, you will reach the north pole.	
b. I heard a p	olane, but when I looked	it was so high I couldn't see it.	
c. The air ard	ound a high spirals	away from the center.	
d. When the a	ir is cooled, it sinks	·	
e. If you want	to see the sun go down, lool	·	
f. Your chair is	too far back from the desk,	move it	
g. If you trave	I from the north pole to the e	equator, you are moving	
h. The air around a low spirals to the center.			
i. Airplanes on	lly fly forward, they can't fly	·	
j. If your right	•	left hand to the west, you are facing	
k. Put the key	in the door and turn it	the right.	
	on your watch move counte	erclockwise, your watch is running	
m. The heated	dair at the equator rises and	moves aloft	
and	toward the	poles.	
	hern hemisphere the Coriolis	force causes the air moving to the pole to .	
o. If you don't	t want to see where you are	going, you can close your eyes, or you can	

UNIT 4

Weather Causes (3)


SECTION 7. CLOUDS

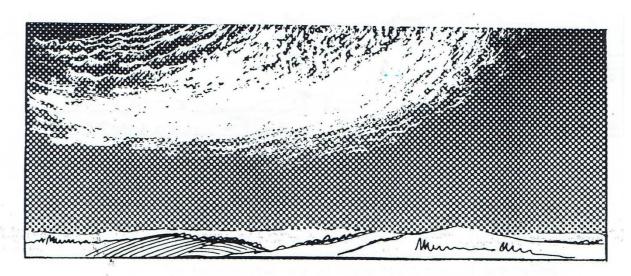
1. General

Cloud types are classified by their method of formation, their com-position, and the altitude at which they are found.

2. Cloud Types

a. <u>Cumuliform</u> (Cu). Cumuliform clouds are formed by vertical currents in unstable air. They are called <u>cumulus</u> and are characterized by their rounded tops which are pulled upward by the rising air currents. In some types, extensive vertical developments, called <u>towers</u>, extend upward thousands of feet. The name "cumulus" means accumulation.

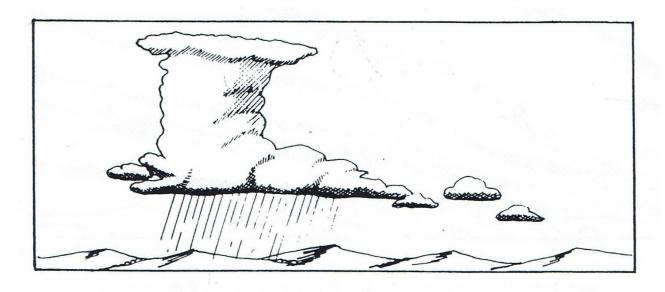
Fair weather cumulus (Cu). cumulus clouds form in convective currents and are characterized by relatively flat bases and rounded tops. Fair weather cumulus do not show extensive vertical development, and do not produce precipitation. A cumulus may be the first step in the development of cumulus-type storm clouds or cumulus-type rain clouds.


b. <u>Stratiform</u> (St). Stratiform clouds are formed when an entire layer of stable air is 1ifted. They are characterized by their <u>stratified</u> or layered appearance, and are called <u>stratus</u> clouds.

Stratus (St). Stratus is a low, regular, sheet-like cloud. It usually has a relatively low base.

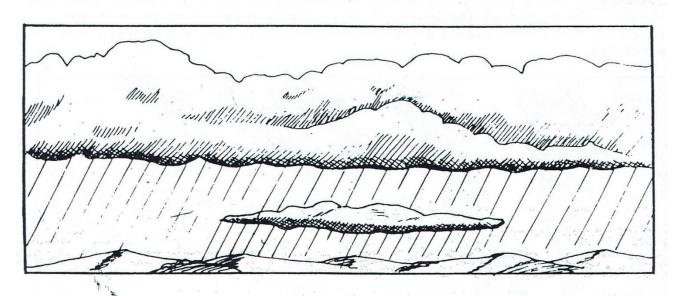
Figure 2

c. <u>Cirroform</u> (Ci). Cirroform clouds are formed from moisture that has been 1ifted so high that it becomes ice particles.. They are often nearly transparent so t that large amounts of sky can be seen through and around them.



Cirroform. High clouds formed from ice particles. Usually they do not cover the sky; areas of sky can be seen through and around them.

Figure 3

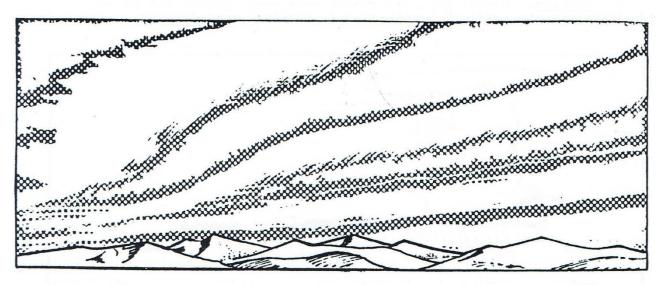

3. Cloud Type Subclassifications

- a. <u>Nimbo-Nimbus</u>. The prefix "nimbo-,' " or suffix "-nimbus," means rain cloud. Stratus clouds from which rain is falling are <u>nimbostratus</u> (Ns), cumulus clouds from whichrain is falling are cumulonimbus (Cb).
- b. <u>Fractus</u>. Clouds that are broken into small pleces are often identified by the suffix "-fractus;" for example, <u>cumulofractus</u>.

Cumulonimbus (Cb). This "thunderstorm" cloud type contains many hazards to flying aircraft: ice, hail, rain, strong air currents, and lightning.

Figure 4

Nimbostratus (Ns). Heavy cloud layers that produce nearly continuous rain, snow, or sleet.


Figure 5

4. Cloud Families

a. Low Clouds. Stratus (St) and stratocumulus (Sc) clouds are in the low cloud group.

The bases of these clouds range from near the surface to about 6,500 feet. Low clouds are almost entirely water but the water may be cooled to below freezing temperatures.


They can contain snow and ice particles.

Stratocumulus (Sc) have lines of rounded bases instead of the even base of a stratus cloud. This cloud often forms when a stratus cloud or cumulus cloud separates into smaller clouds.

Figure 6

b. Middle Clouds. Middle clouds are the <u>altostratus</u> (As), <u>altocumulus</u> (Ac), altocumulus castellanus (Accas), and some nimbostratus (Ns) clouds. The height of the bases of these clouds ranges from about 6,500 to.23,000 feet. The clouds are primarily water but they can contain ice particles.

Altocumulus (Ac) form as long bands. The individual clouds are larger than similar-appearing cirroform clouds.

Figure 7

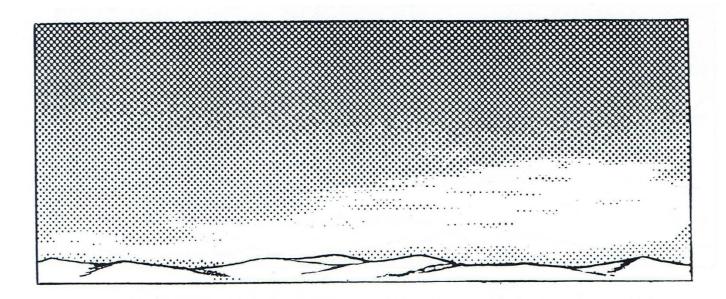
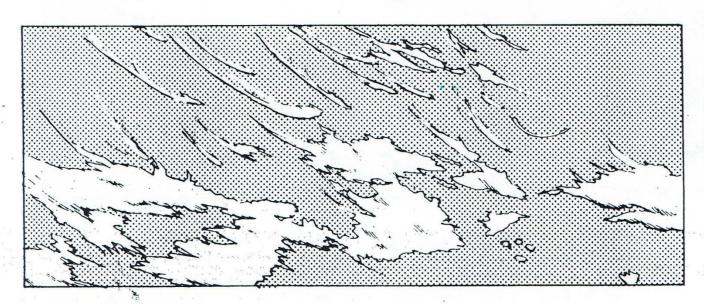
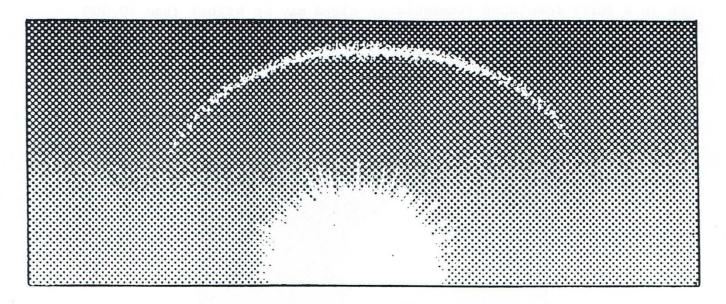

Altocumulus castellanus (Accas) are middle-height convective clouds. They are characterized by lifted tops and comparatively high bases.

Figure 8

Standing lenticular altocumulus (Acsl) are formed where the wind flows over an obstacle such as a line of hills or mountains. The clouds are called "standing" because they tend to stay in one location. Similar clouds called standing lenticular cirrocumulus (Ccsl) may also form at higher altitudes. Since the standing lenticular cirrocumulus are formed from ice particles they are usually whiter than the standing lenticular altocumulus.


Figure 9

Altostratus (As) is a middle-layer cloud that often is nearly transparent so that the shape of the sun can be seen through it. It sometimes forms so high that it extends to the higher layer, similar-appearing, cirroform clouds.


Figure 10

c. High Clouds. High clouds are cirroform and include the <u>cirrus</u> (Ci), <u>cirrocumulus</u> (Cc), and <u>cirrostratus</u> (Cs) clouds. The height of the bases of these clouds ranges from about 16,500 to 45,000 feet. Cirroform clouds are composed primarily of ice particles.

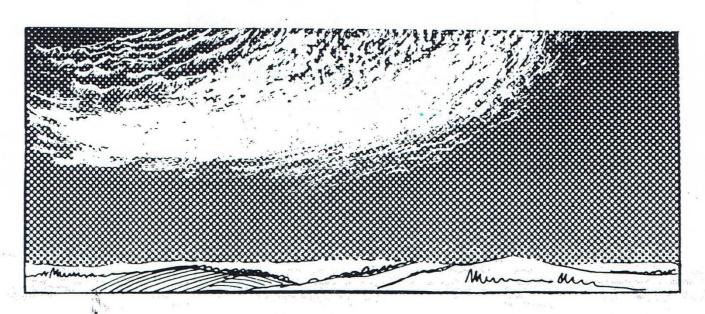
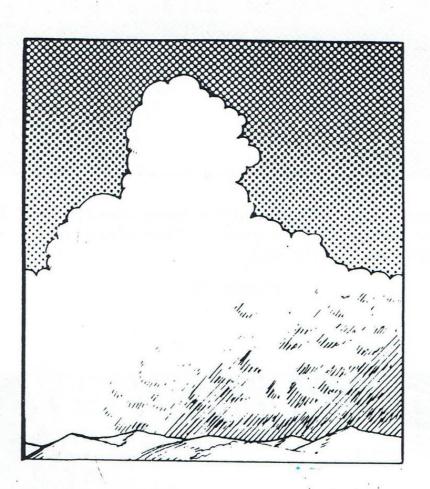

Cirrus (Ci) clouds are very high, light clouds composed entirely of ice. The edges often appear as if they have been pulled to long lines by wind.

Figure 11

Cirrostratus (Cs) are high, often transparent, cloud layers that appear like a whitish sheet. They often appear as a circular line around the sun.


Figure 12

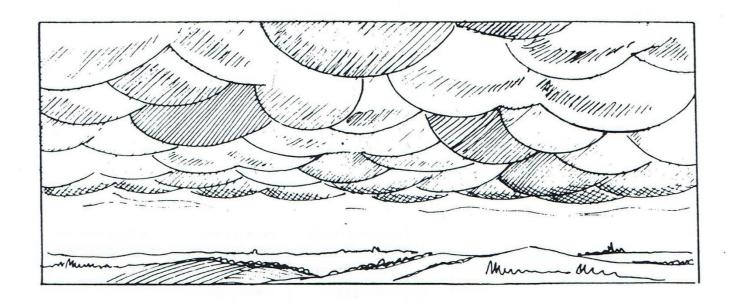
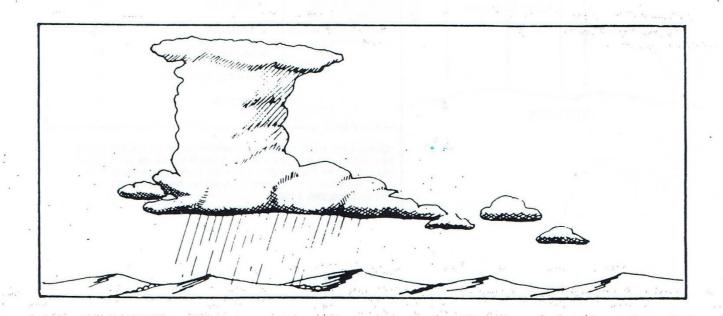

Cirrocumulus (Cc) are high ice-particle clouds that often appear as a layer of small individually separated clouds.

Figure 13

d. Clouds With Extensive Vertical Development. The vertically developed clouds are called cumulus and cumulonimbus. The height of their anges from as low as 1,500 feet to slightly more than 10,000 Tops in a fully developed cumulonimbus cloud may be higher than 50,000 feet. clouds with extensive vertical development are definite indications of unstable air. The <u>towering cumulus</u> cloud is a common example of a vertically developed cloud.



Towering cumulus (Tcu) indicate a deep layer of unstable air. Their bases are flat and usually are not as white as the base of a fair weather cumulus. Towering cumulus show extensive vertical development and have high, large rounded tops. They often produce rain showers that do not continue very long.

Cumulonimbus mamma (Cbmam) clouds result from strong up and down currents, and are often associated with severe, turbulent weather. They are characterized by black, rounded bases which are caused by downward air currents.

Figure 15

Cumulonimbus (Cb) "thunderstorm" cloud. The large, flat top or <u>anvil</u> is largely composed of ice particles. The Cb or thunderstorm contains most types of flying hazards; turbulent winds, ice, hail, etc.

Figure 16

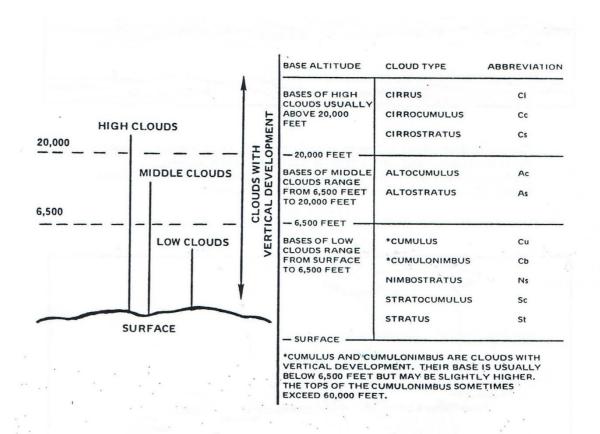


Figure 17

GLOSSARY

ALTOCUMULUS (Ac): noun; a middle height, cumulus-type cloud

Note: alto + cumulus

ALTOCUMULUS CASTELLANUS (Accs): noun; a middle height, cumulus-type

cloud that shows some vertical development

Note: alto + cumulus + castellanus

ALTOSTRATUS (As); noun; a middle height, stratus-type cloud

Note: alto + stratus

ANVIL: noun; the large flat top that develops on some cumulonimbus clouds

Ex. Pilots should avoid flying near or through the anvil of a thunderstorm cloud.

CIRROCUMULUS (Cc): noun; a high altitude, cirroform, cumulus-type cloud

Note: cirro- + cumulus

CIRROFORM: noun; high altitude clouds formed from ice particles

Ex. There are three basic cloud types; cumuliform, stratiform, and <u>cirroform</u>.

Note: cirro + form

CIRROSTRATUS (Cs): • noun; a high-altitude, cirroform, stratus-type cloud

CIRRUS (Ci): noun; a high-altitude, often transparent, cloud layer or group of separated

clouds

CUMULIFORM: noun; a cloud type characterized by flat bases and lifted rounded tops

Ex. There are three basic cloud types; cumuliform, stratiform, and cirroform.

CUMULOFRACTUS: noun; cumulus clouds that have developed as (or been separated into)

small separate clouds

Note: cumulo + fractus

CUMULONIMBUS (Cb): noun; a cumulus-type cloud with possible precipita - tion

Note: cumulo + nimbus

CUMULONIMBUS MAMMA (Cbmam): noun; a large turbulent, cumulus-type storm

cloud characterized by rounded extensions of the base

Note: cumulo + nimbus + mamma

CUMULUS (Cu): noun: a cloud characterized by a flat base and lifted, rounded top

-FRACTUS: suffix; adds the meaning of broken or separated into pieces

Ex. cumulofractus

NIMBO- (N-): prefix; adds the meaning of precipitation possibility (rain, snow, etc.)

Ex. nimbostratus (Ns)

-NIMBUS (-b): suffix; adds the meaning of precipitation possibility(rain, snow, etc.)

Ex. cumulonimbus (Cb)

NIMBOSTRATUS (Ns): noun; a stratus-type cloud with possible precipitation

Note: nimbo + stratus

STANDING LENTICULAR ALTOCUMULUS (Acs1): noun: a middle height-type cloud that forms

and remains near an obstacle to the wind

Note: standing + lenticular + alto + cumulus

STANDING LENTICULAR CIRROCUMULUS (Ccs1): noun; a high altitude cumulus-type cloud

that forms and remains near an obstacle to the wind

Note: Standing + lenticular t cirro t cumulus

STRATIFIED: adjective; formed in layers

Ex. Look at this piece of rock; you can see from the layers that it is stratified.

Note: strata (layer) + fied (made)

STRATIFORM: noun; a cloud type characterized by its flat, sheet-like appearance

Ex. There are three basic cloud types; cumuliform, stratiform, and cirroform.

STRATUS (St): noun; a low, flat, sheet-like cloud

STRATOCUMULUS (Sc): noun; a low cloud layer that is formed into long separated,

rounded bands

Note: strato + cumulus

TOWER: noun; the extended top of a cumulus-type cloud.

Ex. Upward currents will cause cumulus clouds to form towers.

TOWERING. CUMULUS (Tcu): noun; a cumulus cloud with extensive vertical development

Note: tower t ing+ cumulus

Language Exercises

l	TEDN.	M	$\cap \cap V$.	Oral	Exercises
1		/	l Mar	t nai	

1. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces.

	Cumuliform	stratified	nimbostratus	
	Cumulus	stratus	cumulonimbus	
	Tower	cirroform	-fractus	
	Stratiform	nimbo-/-nimbus	cumulofractus	
a.			e prefix cloud.	is
b.	Of the three basic clo	ud types,	clouds form at the	e highest
C.	The tops of cumulus or rising air currents	clouds can be pulled	upward into	by
d.	Of the three cloud tyl		ouds are produced by ve	ertical
e.	When a cumulus clou		ne suffixcloud.	is
f.	The main difference b	etween cumulus and	stratus clouds is that	
	clouds form in unsta that has been lifted.	ble air, and	clouds form in st	able air
g.	Of the three cloud type flat layers.	oes,	clouds form as a fla	at ayer, or ir
h.	Wher things are form	med in layers, they ar	e described as being	
i.		; small separ	into small pieces are iden ated pieces of cumuliforr	•
j.	When it is raining we		ither (Or
k.	The	_ type of cloud is ma	de up of ice particles.	
i.		• •	oy the suffix "_form;" the 	•

	•	than once, and you may have to make the word plural or rite the words in the spaces.			
	Stratocumulus	altocumulus castellanus			
	altostratus	standing lenticular altocumulus			
	altocumulus	standing lenticular altocumulus			
	cumulus	stratus			
	cirrocumulus	cirrostratus			
a.	Cumuliform and strati	form clouds can exist at al1 three alti- tude divisions.			
	When they are low the	ey are called just and			
b.		stratiform clouds occur at the middle altitudes,			
	they are called	and			
C.	High-altitude cumuliform and stratiform clouds are called and				
d.	When low stratus or cumulus clouds break up and begin to separate into lines of clouds with rounded bases, they are often identified as; the name is a combination of both names because they could be formed from either or clouds.				
e.	. Middle altitude cumulus clouds that form into lines with small towers are identified as				
f.	Standing clouds can form at middle altitudes and high altitudes over areas where wind flows over a line of hills or mountains. The middle altitude standing clouds are identified as, and the high ones are identified as				
g.		occur at low, middle, and high altitudes. They are called			
h.		o occur at all three altitudes, called (low)(midd1e)			
	, and				

Select words from the list below to complete the following sentences. Some of the

2.

	the tense.	Do not try to write the	words in the spaces.
	cirrus	S	cirrostratus
	towe	ring cumulus	cirrocumulus
	cumı	ulonimbus mamma	cirroform
	anvil		
a.	High altitude	e clouds are classified as	; the actual
	-1	L	or.
	cioua coula i	pe,	, or
b.			aracteristics are called
	High altitude	e clouds with cumulus ch	
С.	High altitude	e clouds with cumulus checkers	aracteristics are called
С.	High altitude	e clouds with cumulus che clouds with stratus chai uds with extensive vertic	racteristics are called racteristics are called
c . d.	High altitude High altitude Cumulus clo	e clouds with cumulus che clouds with stratus charuds with extensive vertice	racteristics are called racteristics are called

3. Select words from the list below to complete the following sentences. Some words may be used more than once, and you may have to make the word plural or change

II. SENTENCE PRACTICE: Oral Exercises

NOTE: Very often when you are reading technical material you will see that certain words become associated with each other. The same words will be the second noun and verb in one sentence, the verb and first noun in another sentence, and then will appear as an adjective plus in a third sentence. Compare the following sentences .

The air currents <u>lift</u> the tops of the clouds

The tops of the clouds are lifted.

The <u>lifted</u> tops form towers.

Use the information given'to make two sentences as shown in the examples.

Complete the last part of the last sentence with your own words.

EXAMPLES:

Information: The ground <u>heats</u> the

Say: "The <u>air</u> is <u>heated.</u>"

Say: "The <u>heated air</u> " (i.e., rises and expands)

Information: The manufacturer <u>partially empties</u> the <u>container</u>.

"Say: "The container is partially emptied."

Say: "The partially emptied container" (i.e., expands and contracts)

Information:
a. The uneven heating <u>disturbs</u> the <u>air .</u>
b. The Coriolis force <u>modifies</u> the <u>path</u> followed by the air.
c. Convection currents <u>break</u> the <u>clouds</u> into pieces
d. The heat at the equator <u>expands</u> the <u>air.</u>
e. The movable arm <u>indicates</u> the <u>pressure</u> on a scale.
f. The cold air mass <u>deflects</u> the <u>hot</u> air upward.
g. The sun <u>radiates heat and light</u> to the earth.
h. The weatherman <u>converts</u> the <u>pressure</u> to millibars.
i. Cooling <u>decreases</u> the <u>density</u> of the air.
j. The pilot <u>adjusts</u> the <u>altimeter</u> to show sea-level pressure.
k.' The ground <u>transfers heat</u> to the air.
i. The weatherman <u>connects</u> the <u>points</u> of equal pressure with lines.
m. The dry air <u>evaporates</u> <u>water.</u>
n. Evaporation <u>increases</u> the <u>humidity</u> of the air.

III. VOCABULARY EXPANSION: Oral Exercises

NOTE: Many words in English have a noun form and a verb form; there is usually very little difference in the meaning. Often the verb is changed to the noun by the addition of "-tion."

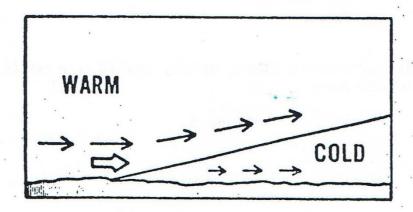
Directions:

- (1) Read the sentence to yourself.
- (2) Make and say a simple sentence using the underlined verb as a noun with the same general meaning. (Add "-tion.")
- a. The Coriolis force <u>acts</u> on the air moving poleward.
- b. There is a system to <u>abbreviate</u> the cloud names.
- c. Water evaporates much faster on a hot, dry day.
- d. The indicator <u>rotates</u> to show the wind direction.
- e. Weather stations <u>communicate</u> their readings to a central station.
- f. A change in pressure often <u>indicates</u> a change in weather.
- g. They correct all errors with a red pencil.
- h. Air masses migrate from area to area.
- i. The mountains north of here <u>deflect</u> a lot of the wind to the east.
- j. They locate weather stations throughout an area.
- k. After a few years, the station accumulates a lot of records about the weather in that area.
- i. The air circulates from the equator to the poles and back again.
- m. Cumulus clouds form in unstable air.
- n. The moisture in the air condenses and precipitates.

UNIT 5

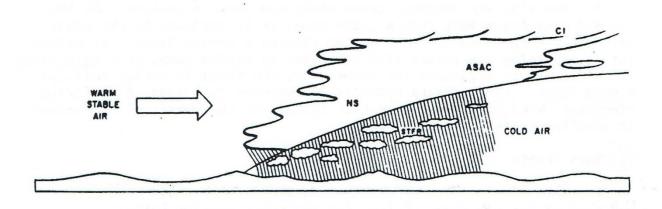
Weather Causes (4)

SECTION 8. FRONTS


1. General

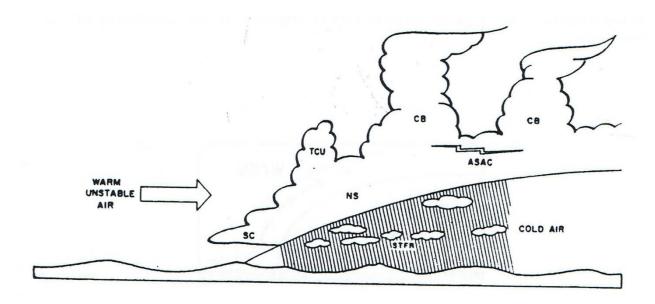
a. When two different air masses meet, they normally do not mix (unless their temperatures, pressures, and relative humidities are very similar). Instead, a <u>boundary</u> is created called a <u>frontal</u> zone, or <u>"front</u>." When warm air moves forward, the colder air mass projects under the warmer air mass in the form of a <u>wedge</u>. If the boundary is not moving, the condition is called a "stationary front."

b.Usually, the boundary moves along the earth's surface. one air mass moves back from a given area, it is replaced by the other air mass moving forward. This action creates a moving front. If warmer air is replacing the colder air, the front is called warm, or a <u>warm front</u> If colder air is replacing the warmer air, the front is called cold, or <u>cold front</u>. Since fronts normally lie between two areas of differing pressures, wind <u>shifts</u> occur in both types, but the degree of difference is usually greater in a cold front.


2. Warm Fronts

a. When a warm front moves forward, the warm air slides over the wedge of colder air ahead of it. See the <u>cross section</u> below.

Cross section of a warm front. The slope of a warm front generally is more gradual than the slope of the cold front. Movement of the warm front (shown by the large white arrow) is slower than the wind in the warm air (shown by the black arrows). The warm air gradually eats away the cold air as it moves across the slope of cold air.


b. Warm air usually has higher humidity. As the warm air is lifted, its temperature is lowered. As the lifting process continues, the moisture in the air condenses. Low nimbostratus and stratus clouds form, and Any drizzle and rain develop. The rain falls through the colder air below, increasing its moisture content so that it also becomes saturated. Any reduction of temperature in the colder air may result in extensive fog. The temperature of the cold air may be reduced when the ground cools after the sun goes down, or it may be reduced by the colder air moving up and rising over sloping terrain such as hills or mountains. As stable warm air moves up the slope of the front and the temperature of the warm air continues to fall, clouds appear at increasingly higher levels in the form of altostratus (middle height) and cirrostratus (high altitude) clouds.

A warm front containing warm, moist, stable air moving up over a cold air mass.

Figure 2

c. If the warm front air moving over the colder air mass is unstable, cumulus clouds (Cu), cumulonimbus clouds (Cb), and altocumulus clouds (Ac) will form and frequently produce thunderstorms and showers.

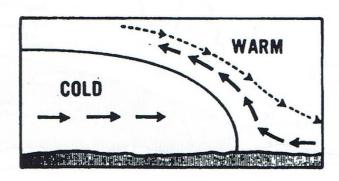
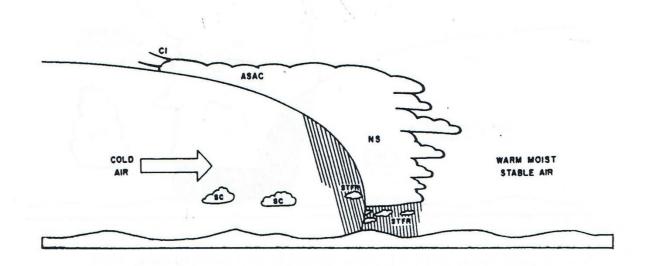

A warm front with warm, moist unstable air moving up over a cold air mass. Lifting along the slope of the cold air mass is more gradual than the type that occurs when a cold front advances, because the wedge of cold air is flatter. Showers and thunderstorms caused by the instability are spread above the frontal surface. Convective storms may occur in the layer of stratiform clouds. Stratus fractus clouds form in the precipitation area, as water is evaporated from the warm raindrops and is condensed in the cold air.

Figure 3

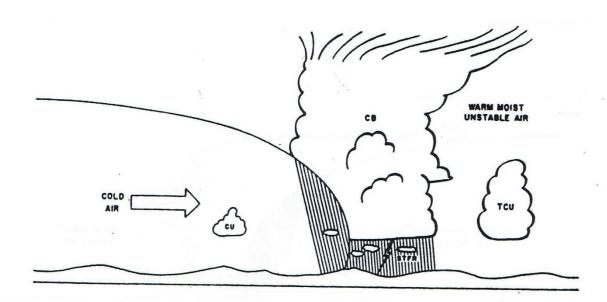
d. As a last step of warm front air movement, the warm air is. Forced up near the stratosphere. In the freezing temperatures at that height, the condensed moisture appears as cirrus clouds (Ci). The up-slope movement of the warm front air over the wedge of cold air is very gradual. It rises approximately 1,000 feet every 20 miles. Cirrus clouds may form at an altitude of approximately 25,000 feet and 500 miles in advance of the point on the surface that marks the position of the front.

3. Cold Fronts


a. When a cold front moves forward, it slides under the warmer air and forces it aloft. This causes sudden cooling of the warm air and forms clouds. the type of clouds formed depends on the stability warm air.

Cross section of a cold front. The frontal slope is steep near the forward edge as cold air replaces the warm air. The large white arrow shows the movement of the front. Warm air may descend over the front as indicated by the broken-line arrows, but more commonly, the cold air forces warm air upward over the frontal surface as shown by the solid-line arrows.

Figure 4

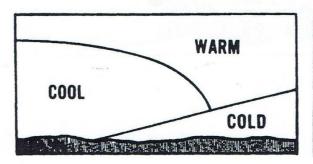

b. In fast-moving cold fronts, friction at the ground slows front so that a steeper frontal surface is created. ntal surface causes a narrow band of weather to be located forward edge of the front. If the warm air is stable, an overcast sky may occur for some distance behind the frontal passage, accompanied by general rain.

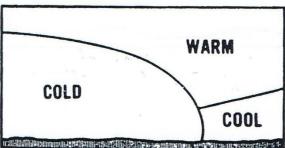
A cold front running under warm moist stable air. Stable stratified clouds form above the front much as they do above a warm front, except that the slope is steeper and the clouds do not cover as large an area. The cold air is stable except where surface heating has created a convective layer. Clouds that form in the cold air are stratocumulus. If you compare this illustration to the warm front shown in figure 3, you will see that cloudiness associated with the warm front appears before surface passage of the front; large area cloudiness with the cold front occurs after surface frontal passage.

Figure 5

c. If the warm air is unstable, <u>scattered</u> thunderstorms and showers may form in it. In some cases an almost continuous line of thunderstorms may form along the front or ahead of it. These lines of thunderstorms," <u>squall lines,"</u> contain some of the most turbulent weather that is experienced by pilots.

A cold front with slightly unstable air underrunning warm, moist, unstable air. Rapid lifting of the warm air at the surface frontal area produces a line of thunderstorms in advance of the front. Fair weather cumulus clouds develop in the slightly unstable cold air. Cumulus clouds may also develop ahead of the front in the warm air due to surface heating.

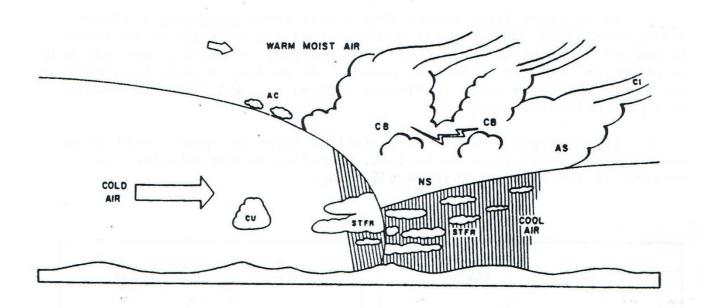

Figure 6


d. Behind the fast-moving cold front there is usually rapid clearing of the clouds, <u>gusty</u> and turbulent winds at the surface, and colder temperatures. The slope of the cold front is much steeper than that of a warm front and the progress is generally more rapid. Usually it moves at a rate of 20 to 35 miles per hour, although, occasionally, cold fronts have been known to move as fast as 60 miles an hour. Weather activity produced by a cold front usually takes place right at the front instead of in advance of the front, and the winds and storms are stronger. In late afternoons in the warm season, a squall line will frequently develop as much as 50 to 200 miles in advance of the actual cold front. Warm front dangers usually consist of low <u>ceilings</u> and low visilbilities; cold-front dangers are mainly sudden storms, strong, gusty, surface winds and turbulence.

Cold fronts move into an area rapidly and make a complete change in the weather within the period of a few hours, and then move on to another area. The squall line that is formed is generally very narrow--50 to 100 miles in width--but it is likely to extend for hundreds of miles in length. Altostratus clouds sometimes form slightly ahead of the front, but they are seldom more than a hundred miles in advance. After the front drier air, and is passed, the weather clears rapidly, there is usually unlimited ceilings and visibility.

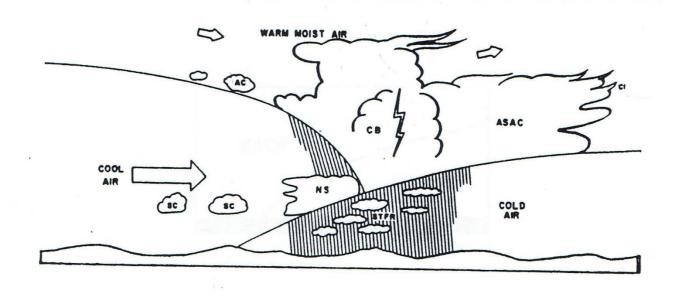
4. Occluded Front

- a. An occluded front occurs when a cold front overtakes a slower moving warm front and forces it aloft so that the warm air is no longer in contact with the ground. This is a condition in which a warm air mass is caught between two colder air masses. It is forced aloft to higher and higher altitudes until it finally spreads out and loses its identity as a particular air mass.
- b. Meteorologists subdivide occlusions into two types: cold front occlusions, depending on the relative tem-perature of the air mass that is advancing.



Cross section of a warm front occlusion. Air in the advancing cold front is not as cold as the air ahead of the warm front. When the cold . front overtakes the warm front, the cool air slides up over the cold air. In this warm front occlusion, cool air (which is relatively warmer) advances and replaces the cool air at the surface. cold air at the surface.

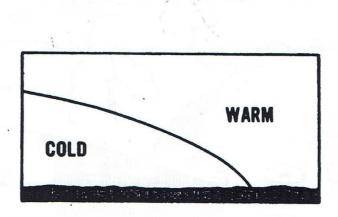
Cross section of a cold front occlusion. Air in the advancing cold front is colder than the air ahead of the warm front. When it advances it forces the warm aloft. In this cold front occlusion, cold air advances and replaces the (relatively warmer)


Figure ?

C. The weather in any occlusion is a combination of warm front and cold front conditions. As the occlusion approaches, the usual warm front type conditions occur: Ceilings become lower, visibility is reduced, and precipitation falls. Generally, the warm front weather is followed almost immediately by cold front type weather: rainstorms, turbulence, and thunderstorms, followed by rapidly clearing weather.

A cold front occlusion. Note that cold air replaces cool air at the surface forcing the warm air aloft. Cold air is nearly stable; cool air, stable; and warm air, unstable.

Figure 8



A warm front occlusion. Here cool air is running over cold air, forcing the cold front aloft. The cool air is stable, the cold air is stable, and the warm air is unstable. Clouds produced by convective currents develop along the cold front aloft. Stratified clouds with possible thunderstorms develop above the warm front. Stratocumulus clouds form in the stable cool air, and stratus fractus clouds (Stfr) form in the cold air due to the warm rain falling through the cold air.

Figure 9

5. Stationary Front

As indicated by its name, the stationary front does not move. The slope of a stationary front generally is gradual, although it may be steep if the difference in the density of the air behind the front and in advance of the front is small. It also may be steep depending on the flow of wind in the two air masses at the front.

Cross section of a stationary front. The front has little or no movement and winds are nearly parallel to the front both in warm and cold air. The steepness of the slope of the front may vary considerably depending on the density of the two air masses and the winds in the air masses.

Figure 10

GLOSSARY

BOUNDARY: noun; the dividing line or border between two objects

Ex. The <u>boundary</u> between those two air masses is called the front.

CEILING: noun; the height above the ground of the layer of clouds, or overcast, that covers half or more than half of the sky There is a low layer of stratus clouds today, the <u>ceiling</u> is only 3,000 feet.

COLD FRONT: noun; the name of the frontal zone that occurs when a cold air mass advances and replaces a warm air mass

Ex. You better wear a coat tomorrow, there is a cold front passing through here tonight.

CROSS SECTION: noun; a picture drawn to show how an object would look if it were cut in half from top to bottom

Ex. They made a cross-section drawing of the engine so you can see inside.

DRIZZLE: noun; a type of light rain that consists of very small drops

Ex. I don't think I'll need a raincoat, I don't have to go very far and it's only drizzling.

FRONT: noun; the boundary zone of an advancing air mass

Ex. You can expect the wind to change direction when the <u>front</u> passes;

FRONTAL: adjective form of front

GUSTY: adjective; wind that changes speed frequently and irregularly

Ex. The winds have been gusty all day.

METEOROLOGIST: noun; a person who prepares weather reports and predictions

Ex. My brother is an Air Force meteorologist.

OCCLUDED FRONT: noun; a warm front that has been lifted aloft by a more rapidly moving cold front

Ex. That warm front that passed through here yesterday is an occluded. Front now.

OVERTAKE: verb; to come up from behind and pass a slower moving object going in the same direction

Ex. Since cold fronts usually move faster than warm fronts, frequently cold front will Overtake warm front that is moving in the same_direction.

PASSAGE : noun form of to pass

Ex. The weather will usually change with the passage of a cold front.

SATURATED: adjective; full of water (very high humidity)

Ex. I think the air is almost <u>saturated</u>; it takes the wet clothes a long time to dry, and water on the floor evaporates very slowly.

SCATTERED: adjective; separated into small pleces and distributed over a large area

Ex. There are a few fair weather cumulus clouds <u>scattered</u> across the sky.

SHIFT: noun; a rapid change from one, position or direction to another position or direction

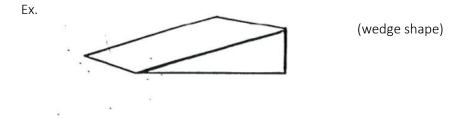
Ex. You can expect a wind <u>shift</u> when the front passes.

SHOWER: noun; a rainfal1 that only lasts a short time

Ex. If we wait a couple of minutes, the shower will probably be over.

SQUALL LINE: noun; a line of storms that develops parallel to and in advance of a cold front

Ex. We can expect to see a squall line come through here before the front arrives.


STATIONARY FRONT: noun; a non-moving frontal zone

Ex. The weather is going to stay pretty much the same as long as this is a stationary front.

WARM FRONT: noun; the name of a frontal zone that occurs when a warm air mass advances and replaces a cold air mass

Ex. We will have a couple of rainy days as the warm front passes.

WEDGE: noun; any object that has the appearance of a long narrow triangle

Language Exercises

١.	NEW	TERMIN	NOLOGY:	Oral	Exercises

of days.

1. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces. Frontal shift stationary front Boundary warm front cross section Front cold front drizzle wedge a. A _______of cold air extends under the warm. front. b. A front is really the between two air masses that have different characteristics. c. The wind was blowing from the north but it just ______ to the east. d. If the adjective for center is central, the adjective for_____ e. The zone where one air mass is in contact with a different air mass is called a f. A _____ occurs when warm air is replaced by cold air. g. This precipitation isn't heavy enough to be called a rai is more like a_____. h. It is more useful to show fronts with a ______ picture. i. When warm air replaces cold air, we say that a_____ has come in. j. A ______occurs when neither air mass moves forward. k. You can expect a wind ______ when you cross a _____ zone, or when a front moves through the area. l. In a _____picture of a warm front, the cold air has a characteristic shape. m. Warm fronts often produce fog, rain, and ______ over large areas. n. In general, a fast-moving front is usually a . . o. The _____zone of a _____ stays in one area for a number

	sed more than on rite the words in		ave to make the wo	rd plural or change the	e tense. Do not try to
	cei	ling	overtake	shower	
	gus	sty	passage	squall line	
	me	eteorologist	saturated		
	OCC	cluded front	scattered		
а.	_	ıs clouds often for		tains so much moisture	e that it is
b.		almost continuou		a strong wind broke th	nem up and
C.		masses 1ifted the		rface and caused an	
	. We often have ra	ainin th	nis season, but they	don't usually last more	e than half an hour.
f.	You can tell from	how the trees are	e moving that the w	ind is	today; they will
	be standing quie	t, then they will m	ove and bend.		
g.	He just left a mir	nute ago. If you hu	rry, you can		him before
	he reaches the I	messhall.			
h.	. Often the		of a cold f	ront will produce stror	ng winds and rain.
i.	A warm front of	en produces a lay	er of low stratus clo	uds; this low	prevents
	pilots from seeir	g the ground whe	n they are descendi	ng for a landing.	
j.	The group of stor	rms called the		came through here	this morning, but the
	actual cold front	isn't expected un	til tonight.		
k.	The weather usu	ally clears quickly	after the	of a	a cold front.
١.	If this cold front		the warm	front that went throu	gh here yesterday, it
	will force it aloft.				
m	n. If it rains behind	a cold front, it us	ually occurs as		showers because
	the clouds are b	roker up.			
n	. The humidity is	very high today; th	e air must be almos	st	·

2. Select words from the list below to complete the following sentences. Some of the words may be

II. SENTENCE PRACTICE: Oral Exercises

NOTE: Sentences about technical information are often composed of two parts: One part makes a statement; the other part describes a condition that is necessary in order for the statement to be true.

The front is called warm, or a warm front (statement) If warm air is replacing cold air (condition)

Sentences of this type may occur with the statement first followed by the condition, or with the condition first followed by the statement. Compare the following:

- (1) The front is called warm, or a warm front, if warm air is replacing cold air.
- (2) If warm air is replacing cold air, the front is called warm, or a warm front.

Statement-condition sentences may use "1f," "when," "as," "since," "whenever," etc.

Direct ions

- (1) Look at the phrases given and identify which statement and which is the condition.
- (2) Combine the phrases so that the statement is first and say the sentence.
- (3) Combine the phrases so that the condition is first and say the sentence.

Example:

Whenever the equilibrium is disturbed (condition) Air begins to flow from areas of higher pressure to areas of lower pressure (statement)

Say: "Air begins to flow from areas of higher pressure to areas of lower pressure whenever the equilibrium is disturbed."

Say: "Whenever the equilibrium is disturbed, air begins to flow from areas of higher pressure to areas of lower pressure."

a.	(1)	Each part of the earth has one day period and one night period every 24 hours
	(2)	Since the earth completes one rotation every 24 hours
 b.	(1)	According to where the earth is in its revolution around the sun
ν.		One hemisphere will be closer to the sun than the other
	(2)	One hemisphere will be closer to the sun than the other
_		
C.	(1)	As the weight of the atmosphere changes
	(2)	The height of the column of mercury in the tube changes
_		
_		
d	. (1)	The aneroid barometer must be checked by comparing it with a mercurial barometer
	(2)	When it is used for official measurement
	(-)	
_	(4)	
e.		As millibars are the units of atmospheric pressure used on weather maps
	(2)	The sea level barometric pressure reading is converted to millibars
_		
_		
f.	(1)	The altimeter will read the airport's elevation
	(2)	When an aircraft's altimeter has been set to the local pressure
		Note: Use "it" in the second phrase of your sentence.
		·
_		
_		

g. (1) Temperature decreases with increasing altitude
(2) In the lower 30 or 40 thousand feet of the atmosphere
h. (1) In the northern hemisphere (2) This rotation causes air to flow to the right of its normal path
i. (1) The air is deflected to the east
(2) the air rises and moves northward from the equ
Note: Use "it" in the second phrase of the sentence.
j. (1) At altitudes two to three thousand feet above the surface
(2) The wind speed is greater and the direction is usually parallel to the isobars
k. (1) The warmer air expands and becomes lighter than the surrounding cool air
(2) When two bodies of air next to each other are heated unequally
I. (1) The polar and arctic air masses generally move toward the southeast, and tropical air masses move toward the northeast
(2) Since the general movement of the atmosphere in the United States is toward the east

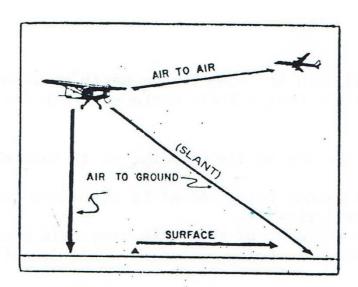
m.	(1)	Unless their te	mperatures, pressures, an	d relative humidities are very similar		
	(2)	Two different	air masses normally do no	t mix when they meet		
III.	VO	CABULARYEXPA	NSION: Oral Exercises			
	Sel	ect the word fr	om the three given to com	plete the sentences.		
	1.	condense	condensation	condensed		
		a. Sometimes drops of wate		on a cool surface and forms		
		b. Fog and clo the air.	uds are a result of the	of moisture in		
		c. The	moistu	re forms 1arger and larger drops		
		d. Evaporatio	n and	are two processes that relate to		
		moisture in t	he air.			
2.	sa	turate	saturation	saturated		
	a.	The air is	, it	can't take up any more moisture.		
	b.	o. Often, when precipitation falls through a lower layer of air,				
		of the lower layer occurs.				
	c.	c. Come in out of the rain, your clothes must be				
	d.	First the rain _		the ground, then the water starts to		
		collect on the s				

3. extend	extension	extended			
a. We won't be a	able to finish the test in one	hour so I will	the		
class period by fiftee	n minutes.				
b. The course is r	normally done in three week	s; but we have a one week			
	this time beca	use of the holidays.			
c. The wire is		as far as it will go; but it is st	til1 too short.		
d. The warm air o	f a warm front	v	vedge of cold air.		
4. reduce	reduction	reduced			
a. If we take a bu	s rather than a train, we can		the cost of		
the trip.					
b. The higher you	u go in the troposphere, the	more the temperature			
is	·				
c. There is no		in temperature in an	inversion area.		
d. when a low pr	. when a low pressure system is in the area, the				
pressure allow	vs the container in the anero	oid barometer to expand and	d move the		
indicator arm.					
5. combine	combination	combined			
a. Normally air fr	om two different air masses	won't			
unless the cha	racteristics are very similar.				
b. An occluded fr	ont wil1 produce a	of war	m-front and		
cold-front con	ditions.				
c. Driving is very	dangerous when high speed	is	with		
wet roads.					
d. The	of low cellings	and continuous rain is a cha	aracteristic of a		
warm front.					

6. modify	modification	modified
a. All air masses ar	e	slightly by the characteristics of the
regions they pas	s over	
b. Heating at the e	quator causes a	in the density of the
air mass.		
c. Convection curre	ents can	the weather in a local area.
d. There haven't be	een any	in the basic mercurial
barometer, but	the aneroid barometer ha	as been
		several times to make it more accurate.
e. The		aneroid barometer doesn't have to be
checked so ofter	١.	

UNIT 6

Weather Hazards


SECTION 1. RESTRICTIONS TO VISIBILITY

1. Visibility

a. There are three types of visibility which affect aviation.

They are: <u>horizontal</u> surface visibility; air-to-air, or flight visibility; and air-to-ground, or slant visibility.

- (1) Horizontal surface visibility refers to the ability of an observer on the surface to see other objects on the surface.
- (2) Air-to-air visibility refers to the ability of an observer aloft to see other objects aloft.
- (3) Air-to-ground and slant visibility refer to the ability of an observer aloft to see objects on the surface.

Types of visibility in aviation: air-to-air, air-to-ground, and horizontal surface. Surface visibility is observed and reported by ground stations. Air-to-air and air-to-ground visibility are reported by pilots in flight.

Figure 1

- a. Except in periods of overall clear weather, the three types of visibility that affect aviation function independently of each other. Horizontal surface visibility may be good at a time when cloud condi- tions 1imit air-to-air and air-to-ground visibility. At other times, horizontal surface visibility and air-to-air visibility may be good in an area where cloud layers limit air-to-ground visibility. A particular airport may be closed so that aircraft do not arrive or depart because of bad horizontal surface visibility, while air-to-air visibility may be excellent a short distance above the surface.
- b. The stability of air largely determines the type and intensity of restrictions to visibility near the ground. Stable air, which resists vertical movement, doesn't break up and spread out re to visibility. However, unstable air produces vertical currents which vertically and horizontally. d to break up and separate fog, and to spread haze and smoke Precipitation in stable air tends to without stopping, precipitation in unstable air ally cover large areas, nor does it usually continue a long t can say, stable air will have a characteristic of poor/ visi bility, and unstable air, good visibility.
- c. As the earth and lower layers of air become warm during, air that was stable during the early morning hours ma unstable. For this reason visibility usually improves as temperatures rise. If cloud layers aloft keep the sun's heat from reaching the ground, visibility improvement is usually slow.

2. Fog

- a. Fog is a cloud with its base at the earth's surface. f Fog forms by an atmospheric process that affects surface air in one or both of the following ways:
 - (1) Cooling the air to its dewpoint or to saturation by:
 - (a) the ground being cooled by nighttime loss of heat, which then cools the air contacting it
 - (b) the movement of moist air over cold ground..
 - (c) moving air being cooled as it is forced to rise.up sloping terrain
- (2) Raising the dewpoint to that of the air temperature. Normally happens when the evaporation

of warm rain adds water <u>vapor</u> to the air. This air is then cooled by surrounding cold air.

b. The conditions <u>favorable</u> to fog formation are: light winds of 10 knots or less, and a small difference in the temperature and the dewpoint

3. Stratus Clouds

At times when conditions are favorable for fog, a very low cloud layer may form. This is especially true over flat terrain. These fog-like clouds form in stable air and often exist together with fog. When this happens, there is no exact point where it can be said that the fog layer stops and the stratus cloud layer begins. An observer on the surface then reports the vertical visibility as the distance he can see upward into the fog.

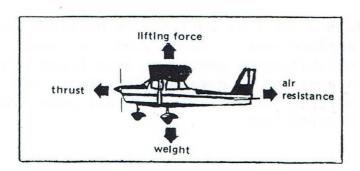
4. Haze and Smoke

Visibility is reduced when a stable layer of air contains large amounts of very small dust or salt particles. The particles produce the condition called haze. The haze may occasionally extend from the surface up to 15,000 feet. Haze layers often have definite upper 1imits or tops, above which air-to-air visibility is good. However, air-to-ground visibility from above a haze layer is poor, especially on a slant. Smoke restricts visibility in a manner similar to haze. Smoke sometimes collects in layers aloft, restricting visibility at that altitude, while visibility under it and over it may be good. Haze and smoke wil1 normally be a more severe restriction to visibility when a temperature inversion exists.

5. Blowing Snow, Dust, and Sand

ong surface winds and vertical currents in unstable air carry a erials from the surface such as dust, sand, or snow. These I reduce surface visibility to near zero over large areas. I favorable conditions dust can be carried aloft to 15,000 feet and restrict slant, flight, and surface visibility. Sand and snow are seldom carried aloft beyond a few hundred feet.

6. Precipitation


Snow, drizzle, and rain are the most common forms of precipitation that cause restrictions to visibility. Of these, snow is usually the most effective in reducing visibility. Heavy snow frequently reduces surface and slant visibility to near zero. Rain rarely reduces surface visibility to less than one mile and has a tendency to wash dust, smoke, and even fog particles out of the air. However, drizzle often occurs at the same time fog, haze, and smoke are present, resulting in visibility being less than it would be if rain had occurred. Precipitation on the windows of an aircraft greatly reduces a pilot's visibility; and if it freezes, he may have no forward visibility at all.

SECTION 2. ICING

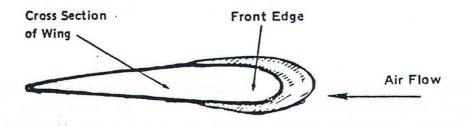
I. General

a. Aircraft <u>icing</u> affects an aircraft's flight characteristics. When icing is severe, it can cause an aircraft to be unable to continue flying. Ice that forms on the outside surfaces of an aircraft increases the weight of the aircraft and changes the shape of surfaces on which it forms. Icing can also occur in the engine equipment that leads outside atmospheric air to the engine. Icing inside these parts reduces the flow of air to the engine. The amount of air entering the engine can be so reduced that the engine can no longer produce the required power or it stops completely. Icing is so dangerous to aircraft that many aircraft have equipment to prevent: the formation of ice.

b. Four forces act on flying aircraft: the downward force, weight; the downward force, <u>lift;</u> the resistance of the air, <u>drag;</u> and the force oves it forward, thrust. Icing affects all four fo It decreases the lifting force as increases the weight of the aircraft. result of the extra weight and the change of shape of the lif surfaces. on surfaces causes changes in the flow of air around aircraft and results in increased drag. The decrease in lift and the increases in drag and weight result in a decrease in the forward movement produced by thrust.

Aircraft icing affects the forces acting on an aircraft: lift is decreased, weight is increased, drag is increased, and thrust is decreased.

Figure 2


2. Structural Icing

The ice that forms on the outside surfaces of the aircraft is clas- sified as structural icing. The rate of structural ice accumulation is affected by the shape, size, speed through the air, and angle to the air of the stiucture, such as the wing. Some aircraft are less affected by ice than otgers, but ice affects the flying performance of all arcraft. Although ice may form on any exposed surface of the aircraft, ice on structures such as the wings has the largest effect on flight character- istics. Two conditions are enecessary for serious ice accumulation on aircraft:

- (1) The aircraft must be flying through visible water such as rain or the small drops of water that form clouds.
 - (2) The temperature of the water or of the plane must be O'.

3. Clear Ice

a. <u>Clear ice</u> is a transparent ice that has a glassy surface. It is Identical to the transparent ice that forms on trees and other objects during a freezing rain. It is formed by the relatively slow freezing of large <u>supercooled</u> water drops. The 1ce is smooth and transparent when it is formed from raindrops or large supercooled cloud drops with- out solid precipitation. Ice tends to take the shape of the surface on which it freezes, but it accumulates more at the part of the surface that first meets the flow of air. The icing tends to be <u>thicker</u> and on the front edge of a surface such as a wing, and be <u>thinner</u> as it extends back over the surface.

Clear Ice: Smooth and Glassy

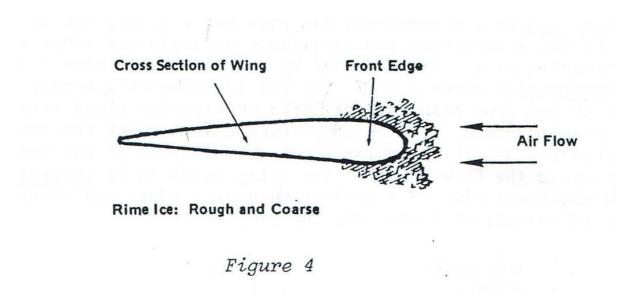

Clear ice can appear in seconds and accumulates rapidly. Pilots have the greatest difficulty in removing clear ice.

Figure 3

- b. Clear ice is the most serious of the various forms of ice be of its rapid accumulation. It adheres strongly to the surfaces it forms on and is difficult to remove.
- c. The conditions most favorable for the formation of clear ice are: large amounts of water present in the air, large size rain drops or large cloud-forming drops, temperatures only slightly below freezing, high speed of the aircraft through the air, and thin aircraft structures such as wings. Clear ice is encountered most frequently in cumulus-type clouds and freezing rain or drizzle

4. Rime Ice

a. <u>Rime ice</u> is a white-colored, non-transparent, accumulation of ice particles that has a rough surface.

b. Rime ice is formed by instantaneous freezing of small supercooled er drops when they contact exposed aircraft surfaces. This us freezing causes a large amount of air to be caught in The air gives the ice its white non-transparent color, and makes it easy to break. Rime ice usually forms on the front edge of a structure and extends forward into the airflow. that takes the shape of the structure. It does not usually form in a layer The fast-freezing rime ice is kely to accumulate in temperatures between -10 C.

c. Rime ice is most frequently encountered in stratiform clouds, and is so common in cumulus type clouds at temperatures bel C. e primary danger from rime ice is the change it make flow across the aircraft's surfaces; the ice seldom ac rapidly. removal methods.

5.Mixed Ice

Rime and clear ice frequently occur together and combine the most dangerous characteristics of both types. mixed with snow, ice particles, or small hail, the mixed ice becomes If the liquid drops are rough, whitish, and irregularly shaped.

6. Frost

- a. <u>Frost</u> is a very thin type of ice caused by the condensation of water vapor directly into ice on surface objects whose temperatures are below freezing. It is' similar in appearance to a thin layer of snow. It is the same type of ice that forms on a car's windows when the temperature falls below freezing and there is moisture in the air.
- b. Thin metal structures are especially likely surfaces on which frost will form. Frost does not change the shape of a wing but its roughness destroys the smoothness of the surface and affects the flow of air across the wing's surfaces. The changing of the airflow over the surface results in decreased lift. A thick layer of hard frost on aircraft structures wil1 increase the minimum speed at which the air- craft can continue to fly by 5% to 10%.

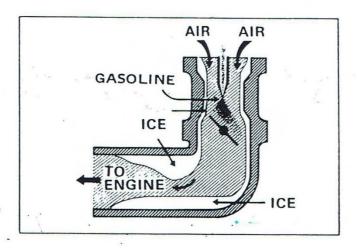
7. Icing Intensity

The military and civilian aviation groups and the National Weather ice have agreed to use a standard classification system to report the intensity of icing. The system uses four classifications of icing: <u>trace</u>, light, <u>moderate</u>, and severe.

ICING INTENSITIES

STRUCTURAL ICING REPORTING TABLE

Intensity	Ice Accumulation	Pilot Report
Trace	Ice becomes visible. The rate of accumulation is slightly more than the melting rate. It is not hazardous even though ice-prevention/ice-removal equipment is not used, unless the condition is encountered for a long period of timeover one hour.	Aircraft identity Location Time Intensity of the type of ice (Rime/clear) Altitude of aircraf Type of Aircraft
Light	The rate of accumulation may create a problem if the flight is continued in those conditions (over one hour). Occasional use of ice-prevention/ ice-removal equipment removes or prevents the accumulation. It does not create a problem if the equipment is used.	Indicated airspeed*
Moderate	The rate of accumulation is such that even short encounters could become hazardous. The use of ice-prevention/ice-removal equipment or change of route is necessary.	
Severe	The rate of accumulation is such that ice-prevention/ice-removal equipment does not reduce or control the hazard. Immediate change of route is necessary.	
	*The speed of the aircraft through the ai	r sa shorm


*The speed of the aircraft through the air as shown on the airspeed instrument.

8. Ground Icing

Water on the airport surface is thrown up on the aircraft as the aircraft moves on the ground; just as water is thrown up on cars driving on wet roads. If the temperatures are below freezing, this water may form ice on the exposed surfaces of the aircraft and prevent correct operation of the various mechanical parts, such as the equipment that raises and lowers the wheels, the brakes, etc.

9. Induction System Icing

<u>Induction system</u> icing is caused when the gasoline is changed to a vapor and mixed with the air entering the engine. The vaporization of the gasoline combined with the expansion of the air as it passes through the <u>carburetor</u> causes a rapid cooling of the mixture. The temperature of the air passing through the carburetor may fall as much as 60'F in a fraction of a second. The water vapor in the air is forced out of the air by this cooling, and if the temperature in the carburetor is O'C or below, the moisture wil1 form as frost or ice inside the carburetor. Even a slight accumulation of carburetor ice will reduce power and may lead to complete stopping of the engine if the accumulation is allowed to continue.

Carburetor icing is a form of induction system icing. This type of icing occurs under a wide range of atmospheric conditons. More accidents result from carburetor icing than from any other kind.

Figure 6

GLOSSARY

CARBURETOR: noun; a piece of equipment used on some gasoline engines to mix air with the gasoline so that it can be burned in the engine

Ex. Atmospheric air enters the engine through the <u>carburetor</u>.

CLEAR ICE: noun; transparent glassy ice

Ex. The rain froze last night; all of the trees are covered with clear ice.

DEWPO INT : noun; the temperature at which the humidity in a particular local air mass reaches the saturation point

Ex. The air isn't saturated at this temperature; but if the temperature falls 10 F it will reach the <u>dewpoint</u>.

DRAG : noun; the name of the force that opposes the forward movement of an aircraft through the air

Ex. Structural icing increases the aircraft's drag.

EFFECT: noun; a result of an action a To3bob

Ex. I don't know what the effect of this change will be.

Note: affect = verb, effect = noun

FAVORABLE : adjective; good conditions for a particular thing to happen, or good conditions

Ex. The weather conditions will be <u>favorable</u> for snow over the next three days.

FROST: noun; a light form of ice caused by condensation of the water from the air in freezing temperatures Ex. There was <u>frost</u> on the grass and trees this morning when I got.' up.

HAZE: noun; the restriction to visibility caused by very small dust or salt particles in the air Ex. Normally you can see the mountain from here if there is no haze.

HORIZONTAL: adjective; parallel to the surface of the earth, opposite of vertical Ex. Stratiform clouds form in horizontal layers.

ICING: noun; the process of forming ice on a surface

Ex. Three aircraft have reported icing in thiat area.

INDUCTION SYSTEM: noun; the group of parts that guide air to the aircraft engine

Ex. If air can't enter through the induction system, won't run.

LIFT: noun; the name of the force that opposes weight and causes an aircraft to move upward

Ex. The airplane wouldn't be able to fly if it didn't have lift.

MODERATE: adjective; an amount that is not particularly large or small

Ex. We have only had a moderate amount of rain this year.

POOR: adjective; not good, almost bad

Ex. Visibility is poor when it is snowing.

PREVENT: verb; to stop something from happening

Ex. The doctor gave him some medicine to <u>prevent</u> him from sick on the airplane.

RIME ICE: noun; rough, white-colored ice

Ex. When the airplane landed it still had rime ice on the wings.

SUPERCOOL: adjective; cooler (colder) than normal

Ex. They are called <u>supercooled</u> drops because they are still 1iquid even though it is below o c.

Note: super - more than normal, i.e., superlight, much lighter than normal.

THICK: adjective; (1) the third measurement for solid objects

Ex. The book is 10 inches 1 ong, 8 inches wide, and 1 1/2 inches thick.

Ex. This book is thicker than yours.

(2)the opposite of thin

Ex. .The material in our winter uniform is thick; the cloth in our summer uniforms is thin.

THIN: adjective; (1) the opposite of thick

Ex. Don't walk on the wing of the airplane when you, work on it; the metal is very thin.

(2)the opposite of fat

Ex. He is so thin now that his uniforms don't fit him.

THRUST: noun; the name of the force that moves an aircraft forward and opposes drag

Ex. The ice on the wings is increasing drag; our effective thrust is decreasing

TRACE: noun; a small amount, sufficient to show something exists

Ex. There was a <u>trace</u> of ice on the wings, but it had no real effect.

VAPOR: noun; a gas as compared to a liquid or a solid

Ex. When water evaporates into the air, the gas is called water vapor.

VAPORIZE: verb; to change to a gas

Ex. The gasoline is <u>vaporized</u> in the carburetor.

Language Exercises

I. NEW TERMINOLOGY: Oral Exercises

1. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the tense. Do not try to write the words in the spaces.

Horizontal	dewpoint	drizzle	
haze	vapor	icing	
poor	favorable	prevent	
a. Liquid gasoline is dange the gasoline is very dange			the evaporates from
b. I just heard the weathe should watch for	· -	-	drop below freezing. We
c. The instructor said that		_	
d. There are no clouds ar you from seeing very far.	nd the day is sunny; but t	:he	keeps
e. When small drops of wunless the air reaches its .		,	called dew. It doesn't occur
f. High humidity and cool for the occurrence of dew	· · · · · · · · · · · · · · · · · · ·		conditions
g. One way to carefully, and to stop and			kes is to work slowly and
h. When we say that writi			
i. I don't think we will get	very wet; it's not raining	g, it's just a	
j. Most people call the ev	aporated water in the a	ir, water	
k. Haze, fog, drizzle, etc., visibility.	are all causes of		
I. I put my name on the fr from taking it by mistake.	ont of my book to		somebody
m. Normally when we ask	a person 'How far can y		about
n. After a cold front passe	s, the air clears and con for good vis		

tense. Do not try to write the words in the spaces. Lift effect thick (-er, -est) drag supercooled thin (-er, -est) thrust clear ice structure rime ice a. Increased weight is one of the ______ of icing on aircraft. b. When the downward and upward forces are in an equilibrium, the aircraft keeps flying at the same altitude. If the ______force is increased, the aircraft will increase its altitude. C. When ice is 1ike glass and you can see through it, it is called . d. Normally water freezes at O'C; but sometimes drops stay liquid at temperatures below 0'C. They are called ______drops. e. Often when a large building is built, they will complete the _____before they put in any walls or floors. f. The engine of the aircraft provides the ______that moves forward. g. A person who is 2 meters tall and weighs 60 kilograms is a ______person. h. Hail is similar to ______ because it is usually rough and white. i. A book with 300 pages is usually______. than a book with 100 pages. j. Since icing affects the airflow over an aircraft's structure, force. it usually increases the _____force. k. It is easy to remember the forces acting on an aircraft as opposites; opposes weight,_____ opposes thrust. i. If ______occur at the same time, it is called mixed ice. m. Haze isn't like precipitation; it has no ______ no the aircraft, it only limits visibility. n. The of the aircraft is covered with thin metal.

2. Select words from the list below to complete the following sentences. Some of the words may be used more than once, and you may have to make the word plural or change the

to	write the words in the space	es.		
	frost	vaporization	trace frost	
	moderate	carburetor	carburetor	
	induction system	structural		
а.	Some regions have what is isn't particularly hot in the			climate; it
b.	Moisture that condenses of surface as thin ice, it is called	·	of called dew. When it cond	
C.	Liquid gasoline is changed place in the carburetor.	place in the carbureto	or. to a gas; this	takes
d.	There was a measure.	of rain la	ist night, but there wasn't er	nough to
e.	Some engines use a	to	vaporize the gasoline and m	nix it with air.
	Since theit also can be affected by ici		_ is used to lead outside air	to the engine,
g.	The shape of the aircraft's s	urfaces. can be chan	ged by	icing.
h.	When icing just shows on a it is no danger to the aircraft		ncrease, it is classified as a _	;
	Evaporation and meaning.		have alr	nost the same
-	It didn't snow last night, and be	there was no rain to	o freeze; that white stuff on	the car must
k.	The weight of the aircraft is	increased by		Icing
l.	Icing in the	can re	educe the flow of outside air	r to the engine.
	. 'Icing can also form when t duces or. even stops the flow	•		icing

3. Select words from the list below to complete the following es. Some of the words may be used more thai and you may have to make the word plural or change the tense. Do not try

II. SENTENCE PRACTICE: Oral Exercises

NOTE: Long sentences are often formed by using a connecting word or se to join, two (or more) statements. The connecting word or phrase usually identifies a relationship between the two statements. Compare the connectors used in the following sentences.

(1) The northern hemisphere has summer when the southern hemisphere has winter.

(when = at the same time)

- (2) The earth is rotating around its own axis <u>while</u> it is revolving around the sun. (while = at the same time; frequently used with "-ing" verbs)
- (3) Temperature decreases <u>as</u> altitude or height above sea level increases. (as = at the same time, with the idea of gradually or step by step)
- (4) Weather is discussed in nontechnical terms by all people <u>since</u> everybody experiences the weather conditions them throughout their lives. (since = because, for this reason, etc.)
- (5) Maritime air moves over the continents <u>and</u> continental air moves over the seas and oceans. (and = both events happen; i.e. John studies French and his sister stu English.)
- (6) The drops get larger and larger <u>and</u> the drops fall as precipitat ion. (and = sequence; one event followed by another event.)

Other frequently used connectors are:

because= for this reason

when = sequence; i.e., I'll buy a car when I get my driver's license.

since = for this reason; i.e., Since you paid for dinner last night, I'l1 pay tonight.

since = sequence; event 2 began at time specified, i.e., He has been studying English since he arrived in May.

until = sequence; event 1 continues up to time of event 2.

before= sequence; event 1 occurred before event 2.

after= sequence; event 2 occurred after event 1.

so = reason; i.e., He bought a camera so he could send pictures home.

at the same time

whenever = event 2 occurs each time event 1 occurs.

Unless = event 2 does/doesn't occur except when event/condition does/doesn't occur.

or "th	ey" whe	en appropriate.
Exam	ples:	The earth revolves around the sun.
		The earth rotates around its own axis.
Say:	the ea	arth revolves around the sun at the same time it around its own axis."
a.	(1) Th	e height of the column of mercury in the barometer changes.
	(2) Th	ne weight of the atmosphere changes.
b.	(1) Th	e partially empty container expands and contracts.
	(2) Tł	ne container is sensitive to changes in atmospheric pressure.
C.	(1) Th	e earth completes one rotation every 24 hours.
	(2) Ea	ach part of the earth has one day period and one night period every 24 hours.
d.	(1) W	e only studied about the troposphere and the stratosphere.
	(2) N	lost aircraft flights and weather occur in those layers.
e.	(1) Th	ne aneroid barometer is checked weekly against a mercurial barometer.
	(2) Th	e aneroid barometer is less accurate and may need adjustment.

Select connectors and combine the following sentences as shown in the example. Use "it"

f. (1) Air begins to flow from areas of highe	r pressure to areas of lower pressure.
(2) The equilibrium of atmospheric pressu	ure is disturbed.
g. (1) The air at the equator expands and ri	200
(2) The earth receives more heat, at the	
h. (1) The air in the northern hemisphere is	deflected toward the earth.
(2) The air rise's and moves northward fr	om the equator.
. (1) Air masses move away from their sou	rce regions.
(2) Air masses are constantly modified by	the areas they pass over.
x. (1) Two air masses that meet normally d	o not mix.
(2) Two air masses have similar temperate	tures, pressures, and relative humidity.
. (1) The warm air mass is replaced by a co	
(2) The warm air mass moves back from a	a given area.

m. (1) The warm air slides over the wedge of colder air ahead of it.
(2) The warm air mass moves forward.
n . (1) Clouds in the form of altostratus and cirrostratus appear.
(2) Stable warm air moves up the slope of the front and the temperature falls.
0. (1) The fast moving cold front has passed.
(2) The weather clears rapidly, there is cooler drier air, and usually unlimited ceiling and visibilities

III.	VOCABULARY EXPANSION: Oral Exercises					
	Use the correct form of the words listed to complete the following					
	sentences. Some words may be used more than once.					
	a. vision, n.	visible, adj.	visibility, n.			
	invisible, adj.	visibly, adv.				
	(1) You can't see a	ir, it's a good example of sor	mething that is	5		
	(2) It is a good idea	a to have your		_ checked every year.		
	(3) After a cold fro	nt passes, the air clears and		is very good.		
	(4) When ice is jus	t	on the	e surface ut does not		
	accumulate, it	is classified as "trace."				
	(5) The shape of the wing changed(6) Convection currents are		as [†]	the ice accumulated.		
				_ but cumulus clouds		
	are an indication	on that they are occurring.				
	b. limit, n.	limit, v.	limited, adj.	unlimited, adj.		
	limitations, n.	limiting, adj.				
(1	L) Even' on a cloudles	s day, haze can		visibility to a		
short dis	tance.					
(2	2) It was such a clear	day that we had		visibility.		
(3) If you want to go on the trip, tell them quickly; because the number they						
can	take is	·				

(4)	The policeman stopped him b	g faster than the speed			
(5)	I would really like to travel and see the country but there are several				
	factors: I don't have much mo	oney; I don't have mud	ch free time; and I don't speak the		
(6)	The post office establishes		on the type of		
	package that can be mailed; it	must be less than a c	ertain size, weight, etc.		
(7)	The tropopause marks the		of the troposphere.		
C.	observe, v.	observer, n.	ohservation n		
C.		observing, adj.			
	0.000. 1.00., 0.0.j.	0.000.18, 0.01.	S. 10.000 10.00		
(1) A	An	person can predict	what the weather will be for the next		
f	ew hours just by knowing abo	ut the different types	of clouds.		
(2) A	At the weather station they ma	ıke official weather	every hour.		
			because they occur at night.		
(4) H	His brother works as a weather		the government.		
(5)	the weather report includes in	formation about the _	clouds,		
	the pressure, the humidity, the	e wind speed and dire	ection, and		
	precipitation.				
(6) <i>A</i>	Anyone can learn to		the weather around him.		
(7)	The station keeps records of al	of the weather	for the last		
f	ew years.				

UNIT 7

Weather Hazards (2)

SECTION 3. TURBULENCE

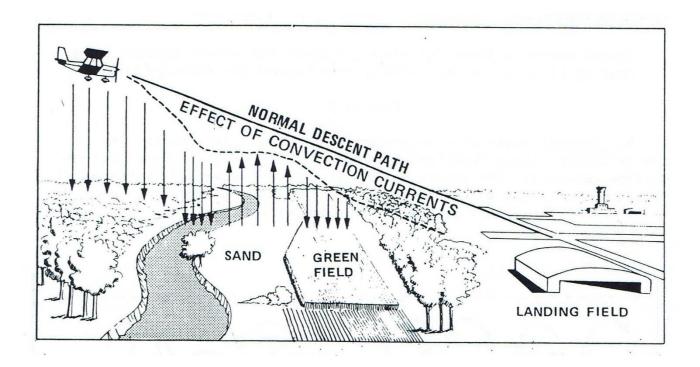
1. General

- a. The effect of turbulence on aircraft ranges all the way from a few small <u>bumps</u> to severe <u>jolts</u> which are capable of producing structural damage. Since turbulence is associated with many different weather situations, it is helpful to have a knowledge of its causes and how the irregular air movements act.
- b. The atmosphere is considered turbulent when irregular <u>eddies</u> of air affect aircraft so that a series of <u>intermittent</u> jolts or bumps are felt. A large range of eddy sizes exist, but those causing turbulence are about the same size as the aircraft and usually occur in an irregular sequence. The <u>reaction</u> of the aircraft to the turbulence varies not only with the intensity of the eddies, but also with the aircraft characteristics such as flight speed, size of the aircraft, altitude of the aircraft, and wing lift/weight relations. Turbulence can cause quick unpredictable changes in the aircraft's altitude and attitude.

2. Intensity of Turbulence.

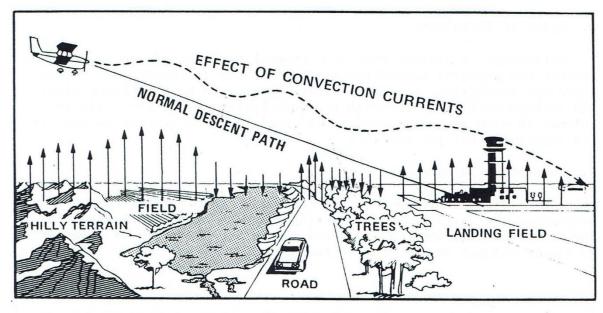
- a. Classification of turbulence intensity is a difficult problem for pilots and weathermen. The pilot's judgment of turbulence severity may be influenced by the length of time his plane is exposed to turbulence, the amount of experience the pilot has, and the type of aircraft he is flying.
- b. In order to provide a standard for reporting and describing turbulence, turbulence has been classified into four intensities; light, moderate, severe, and <u>extreme</u>, according to its effect on the aircraft and its <u>occupants</u>. Turbul ence that causes a continuing rapid series of bumps or jolts is called <u>chop</u>.

	TURBULENCE R	TURBULENCE REPORTING CRITERIA TABLE	
INTENSITY	AIRCRAFT REACTION	REACTION INSIDE AIRCRAFT	REPORTING TERM-DEFINITION
Light	Turbulence that causes slight unpredictable changes in altitude and/or attitude, report as LIGHT TURBULENCE; or Turbulence that causes slight rapid continuous bumpiness without large changes in altitude/attitude, report as LIGHT CHOP.	Occupants may feel slight pressure against seat belts. Objects may move slightly. Food may be served and little or no difficulty is encountered in walking.	Occasional - less than one-third of time. Intermittent - one-third to two-thirds. Continuous - more than two-thirds.
Moderate	Turbulence that is similar to Light Turbulence but of greater intensity. Changes in altitude and/or attitude occur but the aircraft remains in control at all times. It usually causes variation in the indicated airspeed, report as MODERATE TURBULENCE. or Turbulence that is similar to High Chop but of greater intensity. It causes rapid bumps or jolts without major change in aftitude or attitude, report as MODERATE CHOP.	Occupants feel definite pressure against seat belts. Objects are moved and/or fall. Food service and walking are difficult.	NOTE 1. Pilots should report location(s), time, intensity, whether in or near clouds, altitude, type of aircraft and, when applicable, time length of turbulence. 2. Time length may be based on time between two locations or over a single location identifiable.
Severe	Turbulence that causes quick large changes in altitude and/or attitude. It usually causes large variations in indicated airspeed. Aircraft may be momentarily out of control, report as SEVERE TURBULENCE.* Turbulence in which the aircraft is thrown about with great force and is almost impossible to control. It may cause structural damage, report as EXTREME TURBULENCE.	Occupants are forced against their seat belts. Objects are thrown around. Food service and walking are impossible.	
	*High level turbulence (normally above 15,000 feet ASL) not associated with cumuliform cloudiness, including thunderstorms, should be reported as CAT (clear air turbulence) preceded by the appropriate intensity, or light or moderate chop.	ASL) not associated with cumuliform cloudin r turbulence) preceded by the appropriate int	ess, including ensity, or


Figure 1

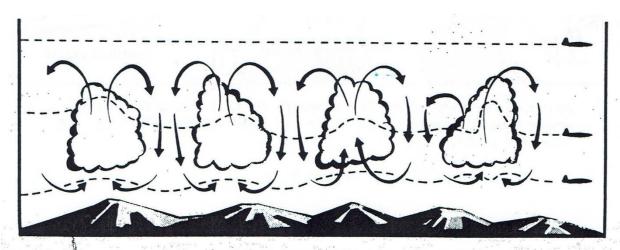
3. Types of Turbulence

Turbulence is divided into four general types based on the meteorological and physical properties responsible for its existence. These types are convective, mechanical, wind <u>shear</u>, and high altitude clear air turbulence (CAT). Although the principal cause of clear air turbulence is wind shear, it is given a special classification because of its importance for jet aircraft.


4. Convective Turbulence

a. As discussed in Weather Causes, convection results from uneven heating of the earth's surface causing currents of variable strength. The following illustrations show how a normal descent may be affected by nearby changes in the type of surface.

Downward currents allow the aircraft to fall below the normal descent path causing it to enter the landing area short of the intended point.


Figure 2

Upward currents force the aircraft above the normal descent path causing it to enter the landing area beyond the intended point.

Figure 3

b. <u>Thermal</u> turbulence is common during sunny afternoons. As the air is heated, large "bubbles" of warm air are forced to rise in convective currents. The upward moving air rises faster and faster until • it reaches a height where the temperature of the rising air is cooled to the same temperature of the surrounding air.

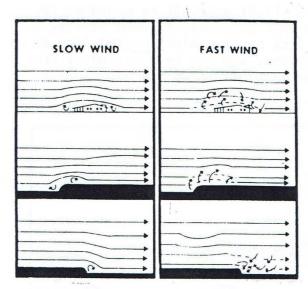
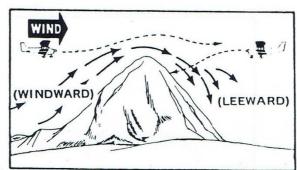

Cumilius clouds are signs of convective currents. Aircraft flying below the tops of cumulus clouds encounter turbulent air. Above the tops smooth flight is possible if convection does not extend above the cloud tops

Figure 4


c. It is important to remember that both up and down <u>drafts</u> develop. Turbulence is more severe when updrafts and downdrafts are close together. Even if the air is very dry with no clouds, convective turbulence may be present.

5. Mechanical Turbulence

a. An object placed in any moving air current disturbs the flow by causing the wind to change its direction of flow to go around the object. Mechanical turbulence is caused by wind flowing over or around an obstruction. The area before the obstacle is called the <u>windward</u> side; the area after is the <u>leeward</u> side

Obstructions to wind flow cause irregular eddies when the wind flows around and passes the obstacle. The degree of turbulence depends on the size and shape of the obstacle, the speed of the wind, and the stability of the air.

Mechanical turbulence in mountains. Air flowing through mountainous terrain is forced upward over the mountains then sinks downward on the opposite side. The degree of turbulence caused by the mountains depends on the shape and size of the mountains, the direction and speed of the wind, and the stability of the air.

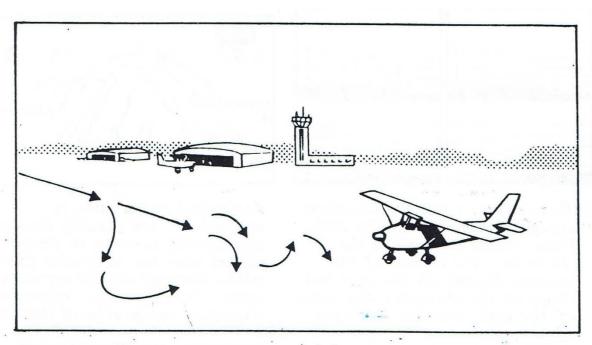
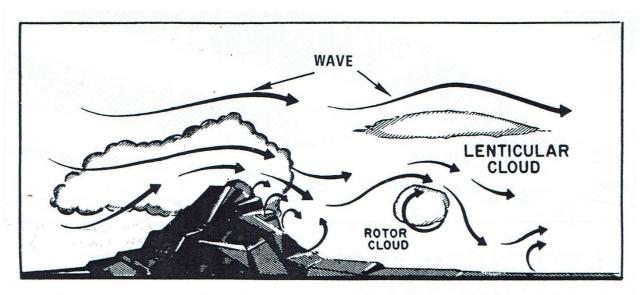

Figure 5

Figure 6

b. Air currents separate to flow around an obstacle and rejoin after they pass the obstacle. When they rejoin, eddy currents develop in the flow that has passed the obstacle. These eddy currents create mechangcal turbulence. If the obstacle had not been there, and no other factor influenced the flow, the wind would flow smoothly and undisturbed. Mechanical turbulence is caused by obstructions in the path of the wind, and is not caused by meteorological processes in the air mass itself. Some objects which tend to produce this type of turbulence are mountains, hills, buildings, and moving aircraft.

6. Low-Level Mechanical Turbulence

- a. Low-<u>level</u> mechanical turbulence is turbulence near the ground that is caused by wind flowing over and around obstructions. The obstructions can be large or tall buildings and other man-made structures, hills, trees, etc. The amount and location of the turbulence is dependent on the wind speed and direction it is blowing from. The turbulence forms <u>downwind</u> from the obstruction, i.e., a west wind produces turbulence east of the obstruction.
- b. It is important for pilots of light aircraft to consider the variability of the wind near the ground, particularly when landing or departing an airport. The landing area may be safely <u>upwind</u> from an obstruction when an east wind is blowing, and yet be a turbulent area because it is downwind from the same obstruction when a west wind is blowing.

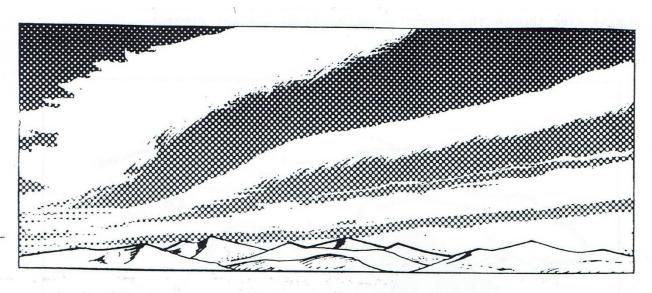


Obstructions at an airport may cause turbulence in the landing area. It is necessary to become familiar with the location and type of turbulence produced in the airport area by winds coming from different directions and at different speeds.

Figure 7

7. High-Level Mechanical Turbulence

a. The air flow becomes very disturbed when wind blows over long lines of mountains. The wind blowing up the slope is usually relatively smooth if the air is stable. On the downwind side the air falls rapidly down the slope. This produces strong downdrafts and causes the air to be very turbulent. When air passing over the line of mountains has sufficient water vapor to produce clouds, lenticular and rotor clouds form downwind from the mountains and indicate severe turbulence. If water vapor is not sufficient to form clouds, severe turbulence can exist even though the characteristic clouds are not present.



When air is forced over mountains and there is sufficient water vapor, characteristic clouds can form. The most characteristic clouds are those that surround the mountain top, and the lenticular and rotor clouds downwind. The lenticular and rotor clouds are signs of severe turbulent conditions, though the conditions may exist even when the clouds are not present.

Figure 8

b. When winds faster than about 50 knots blow directly across a line of mountains, the resulting turbulence may be extreme. Areas of continuous updrafts and downdrafts can extend many times higher than the elevation of the mountain tops. When these conditions occur the air cutrents make regular upward and downward movements called waves in the downwind areas. The waves sometimes extend upward beyond the tropopause. They are called standing waves when they tend to continue in the same location over periods of time.

c. Waves not only reach great altitudes, but they also sometimes extend as far as a hundred miles horizontally downwind from the line of mountains. These waves of air are referred to as standing waves or mountain waves. They are characterized by standing lenticular altocumulus and/or rotor clouds when sufficient moisture is available. These clouds may form as long lines which are called standing wave clouds.

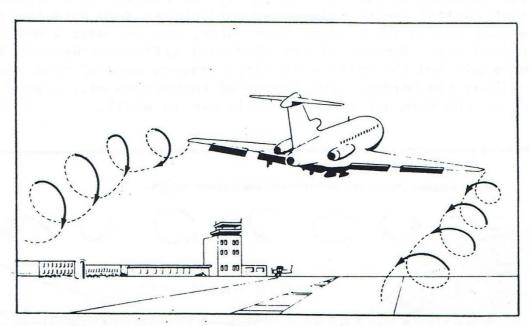

Standing wave clouds. They are called standing because they have very little movement, but the wind flowing through the clouds can be extremely strong.

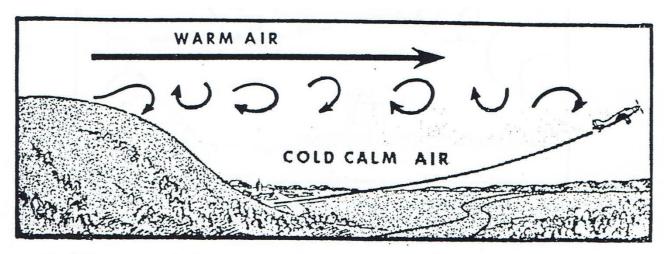
Figure 9

d. Reports of turbulence in waves may range from none to extreme, but usually moderate to severe turbulence will be encountered. The most dangerous characteristic of the standing wave airflow is that the updrafts and downdrafts can be very strong and extend great distances upward or downward.

8. Wake Turbulence

Every aircraft produces a <u>wake</u> when in flight. This turbulence is in the form of two counter-rotating <u>vortices</u> of air extending backward from the tips of the wings. The strength of the <u>vortex</u> produced by the wing tip is determined primarily by the weight, speed, and shape of the wing of the aircraft. The wake produced by a large aircraft can be particularly dangerous to a small, light aircraft.

Turbulence in the form of air currents flowing in a spiral is produced by the wings of an aircraft. These vortices produced by the wing tips are called wake turbulence.


Figure 10

9. Wind Shear

Wind shear exists when there is contact between currents of air flowing in different directions and/or at different speeds. There is a tearing or shearing effect where the currents are in contact with each other. The eddies formed in this contact area are called wind shear turbulence. Wind shear can exist at the horizontal boundary between layers of air moving in different directions and/or at different speeds, or it can exist along a vertical boundary when upward or downward currents are in contact with currents moving in a different direction and/or at a different speed. Horizontal or vertical wind shear can exist at any altitude. The intensity of the turbulence increases as the amount of wind shear increases.

10. Shear with Temperature Inversion

- a. A narrow zone of wind shear, and the turbulence it produces, is often encountered when an aircraft goes up through or descends through a temperature inversion. The wind speed and/or direction sometimes changes very quickly with altitude in this zone.
- b. Wind shear that occurs with a strong temperature inversion near the ground is a particular hazard to aircraft immediately after departing or just before landing at an airport. Typically, heat from the ground radiates up and is lost during the night. This nighttime radiational cooling causes a layer of cold air to form near the ground. The cold air, only a few hundred feet thick, may be under a moving layer of warm air. Because of the windspeed difference between the moving warm air and the still cold air, a narrow zone of wind shear develops along the border. The degree of turbulence will depend on the speed of the warm air since the cold air is still.

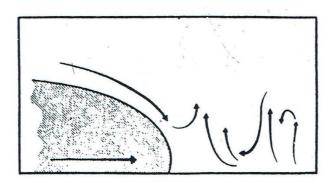

Wind shear located in a zone between the still wind within an inversion and the relatively strong wind above the top of the inversion. This condition is most common at night.

Figure 11

11. Shear Turbulence with Fronts

a. Because winds on either side of a front have different speed and direction, a shear zone exists along the border of these winds.

b. This shear can produce hazardous turbulence for aircraft landing or departing in an airport area when frontal passage takes place. The air ahead of a fast moving cold front is forced upward by strong lowlevel winds. This results in gradually increasing low-level turbulence as the front approaches the airport.

Turbulence ahead of a fast moving cold front. The rapid movement of the approaching cold air creates eddies ahead of the front. Conditions in the frontal zone are favorable for wind shear turbulence.

Figure 12

12. Clear Air Turbulence

The term "clear air turbulence" (CAT) generally refers to high-level wind shear turbulence which frequently occurs in the area of a jet stream. The intensity of CAT may be such that it causes serious problems for aircraft and passengers.

13. Characteristics of CAT

High-level clear air turbulence tends to occur in limited areas for short periods of time. The size of the turbulent area is quite variable, but it is thought to be around 2,000 feet thick, 20 miles wide, and 50 miles or more long. The areas become longer in the direction of the wind. The exact position of one of these areas is difficult, if not impossible to locate. The determination of the locations is largely dependent on pilot's reports; however, the meteorologist can predict general areas where the turbulence might occur.

14. CAT by Seasons

There are from three to four times more CAT occurrences during winter han sunmer. The most frequent altitude of jet stream CAT en counters is 30,000 feet in winter and 34,000 feet in summer.

GLOSSARY

ATTITUDE: noun; the position of an aircraft in relation to its areas, i.e., whether the front is pointed upward or downward, or to the right or left; or whether one wing is higher than the other Ex. When the aircraft leaves the airport the pilot usually puts it in a front-up attitude to gain altitude rapidly.

BUMP: noun; (1) a small projection or raised area on an even surface

Ex. Drive slowly here, there are a lot of bumps in the road.

(2) the effect on a vehicle or aircraft as if it has run over a bump.

Ex. I didn't see what we ran over but I felt the bump.

CHOP: noun; (when reporting turbulence) a turbulence that produces

the effect of a continuous series of close together bumps

Ex. We had about three minutes of light <u>chop</u> but otherwise there was no turbulence and the flight was smooth.

DRAFT: noun; a current of air; updraft = a current of air upward,

downdraft = a current of air downward

Ex. The aircraft went through a strong downdraft and lost altitude.

DOWNWIND: adjective or adverb; a position from an object so that the

wind blows from the object to that position

Ex. You can expect turbulence if you are <u>downwind</u> from the mountains.

EDDY: noun; a turning current of air behind an obstruction caused by

the motion of the air passing around or over the obstruction

Ex. There are <u>eddies</u> of air downwind from the building that are dangerous to small aircraft when they are landing.

EXTREME: adjective; a very large degree of effect

Ex. The heat last summer was extreme for this area.

Ex. The aircraft was damaged by extreme turbulence.

INTERMITTENT: adjective; occurring with irregular frequency

Ex. We have had intermittent rains for three days.

JOLT: noun; the effect on a vehicle or aircraft as if the structure

had received a quick strong hit

Ex. That last <u>jolt</u> was very strong, if we have many more like that the aircraft will be damaged.

LEEWARD: adjective or adverb; the position of objects that are downwind

from another object (See downwind.). Ex. Lenticular clouds form on the <u>leeward</u> side of the mountain.

LEVEL: noun; a particular altitude

Ex. There is too much turbulence at this level; let's go up a couple of thousand feet.

Ex. There are a few low-<u>level</u> clouds but that's all.

OCCUPANT(S): noun; the person(s) in a vehicle, aircraft, building, area, etc.

Ex. The aircraft was damaged when it landed, but none of the <u>occupants</u> were hurt. NOTE: verb; occupy

REACTION: noun; an action produced as a result of another action

Ex. Turbulence that affects a small aircraft may produce no reaction in a large, heavy aircraft.

ROTOR CLOUD: noun; a ball-shaped cloud that sometimes forms near a line of mountains Ex. Rotor clouds and standing lenticular clouds are signs of severe turbulence.

SHEAR: noun; a tearing or breaking effect produced by force moving

in one direction against a stationary object, or an object moving in the opposite direction

Ex. You can see on the piece of metal that it is breaking as a result of <u>shear</u> caused by too much weight.

NOTE: verb; shear

Ex. When the truck went off the road it <u>sheared</u> the tree off right at the surface of the ground.

THERMAL: adjective; caused by heat, or dealing with heat

Ex. Hot air rising is sometimes called a thermal current.

UPWIND: adjective or adverb; a position from an object so that wind

blows from that position to the object

Ex. You won't find much turbulence when you are upwind from the obstruction.

VORTEX, VORTICES: noun; a current that flows in a spiral

Ex. Water forms a <u>vortex</u> in a container when it drains from a hole in the bottom of the container.

Ex. The wind flowing over and around the wing tips creates <u>vortices</u> behind the

WAKE: noun; the disturbance in a fluid (liquid or air) caused by an

object moving through the fluid

Ex. You can see the <u>wake</u> behind the boat. Ex. the aircraft leaves a wake behind it as it moves through the air.

- WAVE: noun; a regular up and down movement in a fluid (liquid or air)
 - Ex. The strong wind caused large <u>waves</u> to form on the lake.
 - Ex. The mountains caused <u>waves</u> to form in the air current.
- WINDWARD: adjective or adverb; the position of an object that is upwind from another object (See upwind.)
 - Ex. Updrafts are more common on the <u>windward</u> side of the mountains.

Language Exercises

1	VIE/V/	TERMINOLOGY:	Oral Exercises
١.	$IV \subseteq VV$	TENIVIINOLOGI.	Oldi Exelcises

1.	WC		an once, and you may hav	owing sentences. Some of the ve to make the word plural or espaces.
		bump	intermittent	extreme
		jolt	reaction	
		eddy	attitude	
	a.	The front of the aircraft is nose-up		raft is climbing it usually has a
	b.	When we say an area has	s a moderate climate, we	mean that it doesn't have
		cold in	the winter or	heat in the summer.
	C.	If a strong wind is blowing downwind from the obsta		currents are formed
	d.	They really should repair t	this road; it's old and has	a lot of
	e.	This has been an unusual	day; we have had	rain and sun all day.
	f.	Since you can't see wind, trees to see the		v strong it is; but you can watch the wind.
				hit the bus, but no one was hurt when he is descending
	i.	The turbulence was like a enough to feel but it didn'	-	; it was just strong
	j.	Roll clouds and lenticular downwind from a mountain		currents
	k.	A gusty wind is a wind that last very long.	at has	increases of speed that don't
	l.	Unless it is corrected, the altitude.	of an air	rcraft to an updraft is to increase

m. When turbulence is classified as ______, it is very dangerous to aircraft.

	occupants	draft	upwind	
	shear	level	chop	
	thermal	downwind		
a. Si	nce convection cu	rrents are caused b	y heating, they are also called	
Cl	urrents.			
			d in the area from an ple in it, it has four	
d. Tł	ne towers of cumu	lus clouds are forme	ed by up	·
e. CA	AT is a special form	of high	turbulence.	
f. Si	nce the bumping o	caused by the turbul	ence was continuous, the pilot rep	orted
it	as	·		
g. If	the wind is blowin	g from your positior	toward an obstacle, you are	
_	from the o	bstacle.		
h. If	the air is still near	the ground and mo	ving at a higher altitude, there is v	vind
_		near the border of t	he two layers.	
i. N	1echanical turbule	nce is classified into	two general types, high	
	nechanical turbule o the altitude it occ		mechanical turbulence, acc	cording
j. W	hen there is a loca	l convection circula	tion, the hot air rises as up	
ar	nd the cool air desc	cends as down		
	•		nove at different speeds than the a rs along the edges of the currents.	
	hen an aircraft is f ould keep on thei		ence, the of the ai	rcraft
			currents than a cool clo e eastward side of an obstacle is tl	

Select words from the list below to complete the following sentences. Some of the

2.

Sel	lect words from the list be	elow to complete the	e following sent	ences.		
So	Some of the words may be used more than once, and you may have to					
	·	inge the tense. Do no	ot try to write th	ne words in the		
	leeward	vortices	windward			
	rotor cloud	wake				
	vortex	wave				
a.				occur in a		
b.	A spiral-shaped current	is often called a				
C.			ans it is on the ₋	side		
d.	· ·	,	ft is a special ki	nd of mechanical		
e.	The wingtips of a movir behind the aircraft.	ng aircraft produce to	WO	of air that extend		
f.	- ·	-	in can create	currents		
g. h.	Large, fast-moving vehic	cles disturb the air as	they move. Eve			
i.	Downwind and	refer to the sa	me position, ar	nd upwind and		
	also have the same general meaning.					
j.				often form to the		
k.	Lenticular clouds and	form	on the leeward	side of the mountains		
	a. b. c. d. e. j.	Some of the words may be make the word plural or charspaces. leeward rotor cloud vortex a. When standing lenticular downwind area they are be. A spiral-shaped current combined to the when a northwind blow decent decen	Some of the words may be used more than once make the word plural or change the tense. Do not spaces. leeward vortices rotor cloud wake vortex wave a. When standing lenticular clouds and small redownwind area they are signs of severe turble. b. A spiral-shaped current is often called a c. The town is south of the mountain, that me when a northwind blows. d. The turbulence produced by a moving aircraft turbulence called turbulence. e. The wingtips of a moving aircraft produce to behind the aircraft. f. High-speed winds blowing across a mountain that extend far above the mountain. g. There should be much less turbulence on the h. Large, fast-moving vehicles disturb the air as invisible, they leave a of air be i. Downwind and refer to the sa also have the same general reference of mountains when strong, winds a leeward of mountains when strong winds a leeward of winds a leeward of winds a leeward of winds a	make the word plural or change the tense. Do not try to write the spaces. leeward vortices windward rotor cloud wake vortex wave a. When standing lenticular clouds and small round downwind area they are signs of severe turbulence. b. A spiral-shaped current is often called a c. The town is south of the mountain, that means it is on the when a northwind blows. d. The turbulence produced by a moving aircraft is a special kiturbulence called turbulence. e. The wingtips of a moving aircraft produce two behind the aircraft. f. High-speed winds blowing across a mountain can create that extend far above the mountain. g. There should be much less turbulence on the h. Large, fast-moving vehicles disturb the air as they move. Even invisible, they leave a fair to the same position, are also have the same general meaning. j. Strong upward and downward currents called leeward of mountains when strong, winds are blowing:		

SENTENCE PRACTICE:	
	Oral Exercises

NOTE: A series of two or more short sentences is often combined to make a single sentence that has the same general meaning. Compare the two following short sentences and the combined one.

- (1) The earth rotates.
- (2) The earth revolves around the sun.

Combined: The rotating earth revolves around the sun.

Combine the two shorter sentences into a single sentence as shown in the examples.

Example 1

- (1) The water vapor condenses.
- (2) The water vapor forms clouds.

Say: "The condensing water vapor forms clouds."

Example 2

- (1) The larger drops precipitate.
- (1) The larger drops fall as rain, snow, sleet, or hail.

Say: "The precipitat ing larger drops fall as rain, snow, sleet, or hail."

a.	(1)) The	air	masses	move
u.		1110	an	11103303	IIIOVC.

(1/	The air masses move.
(2)	The air masses are a major factor in an area's climate.

(1)	The height of the column of mercury varies.
(2)	The height of the column of mercury indicates changes in atmospheric pressure.
(1)	The hollow container expands and contracts.
(2)	The hollow container moves an indicator arm up and down a scale to show pressure changes.
(1)	The air at the equator expands.
(2)	The air' at the equator rises and moves toward the poles.
	The air circulates.
(1) (2)	The air follows a regular path from the equator to the poles and back.
(1)	The cold air contracts.
(2)	The cold air descends to the surface near the poles.
(1)	The large high- and low-pressure systems migrate.
(2)	The large high- and low-pressure systems have the temperature and humidity characteristics of their source regions.

 (2) The warm air mass slides over the wedge of cold air. (1) The warm front air rises and cools. (2) The warm front air forms cirrus clouds up to 500 miles in advance of the from (1) The wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. 	(1)	The air currents rise.
(2) The warm air mass slides over the wedge of cold air. (1) The warm front air rises and cools. (2) The warm front air forms cirrus clouds up to 500 miles in advance of the from the warm front air forms cirrus clouds up to 500 miles in advance of the from the wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart.	(2)	The air currents produce the rounded tops of cumulus clouds.
(2) The warm air mass slides over the wedge of cold air. (1) The warm front air rises and cools. (2) The warm front air forms cirrus clouds up to 500 miles in advance of the from the warm front air forms cirrus clouds up to 500 miles in advance of the from the wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart.		
 (1) The warm front air rises and cools. (2) The warm front air forms cirrus clouds up to 500 miles in advance of the from (1) The wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart. 	(1)	The warm air mass advances.
(1) The warm front air forms cirrus clouds up to 500 miles in advance of the front air forms cirrus clouds up to 500 miles in advance of the front air forms cirrus clouds up to 500 miles in advance of the front air forms. (1) The wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart.	(2)	The warm air mass slides over the wedge of cold air.
(2) The warm front air forms cirrus clouds up to 500 miles in advance of the from the front air forms cirrus clouds up to 500 miles in advance of the from the front air forms cirrus clouds up to 500 miles in advance of the from the front air forms cirrus clouds up to 500 miles in advance of the from the front air forms cirrus clouds up to 500 miles in advance of the from the front air forms cirrus clouds up to 500 miles in advance of the front clouds up to 500 miles in advance of the front clouds up to 500 miles in advance of the front clouds up to 500 miles in advance clouds up to 500 miles in advance clouds up to 500 miles in ad		
 (1) The wing tip vortices counter-rotate. (2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart. 	(1)	The warm front air rises and cools.
(2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart.	(2)	The warm front air forms cirrus clouds up to 500 miles in advance of the fron
(2) The wing tip vortices extend to the rear of the aircraft. (1) The aircraft land and depart.		
(1) The aircraft land and depart.	(1)	The wing tip vortices counter-rotate.
	(2)	The wing tip vortices extend to the rear of the aircraft.
(2) The aircraft may experience temperature inversion wind shear.	(1)	The aircraft land and depart.
	(2)	The aircraft may experience temperature inversion wind shear.
·		

III. VOCABULARY EXPANSION: Oral Exercises

Read the sentence given, say the verb form of the underlined noun, and make a sentence using the verb form. Your sentences should say something about weather.

- a. When the flow of air meets an <u>obstruction</u> it must either go over it or around it.
- b. There is a standard classification for the intensity of turbulence.
- c. The table gives a <u>description</u> of the effects of the different intensities of turbulence.
- d. The <u>variation</u> in turbulence is very large, from small bumps to severe jolts.
- e. The <u>division</u> of turbulence into four types is based on the causes of the turbulence.
- f. Uneven heating of the earth near an airport may produce currents that affect an aircraft's <u>descent</u>.
- g. Long lines of mountains can produce severe disturbances in the airflow.
- h. Rotor and lenticular clouds indicate the existence of severe turbulence.
- i. At night the <u>radiation</u> of heat from the ground may cause an inversion layer to form.
- j. The <u>determination</u> of the location of CAT is largely dependent on pilots' reports.
- k. The expansion caused by warming lowers the density of the air.
- I. The northward movement of the air produces an <u>accumulation</u> of air in the northern part of the hemisphere.
- m. There is a general <u>circulation</u> of the air from the equator to the poles and back again.
- n. Weathermen spend many hours practicing the <u>identification</u> of different cloud types.
 - o. Towering cumulus clouds are definite indications of unstable air.
 - p. Any reduction of temperature in saturated cold air may produce fog.

UNIT8

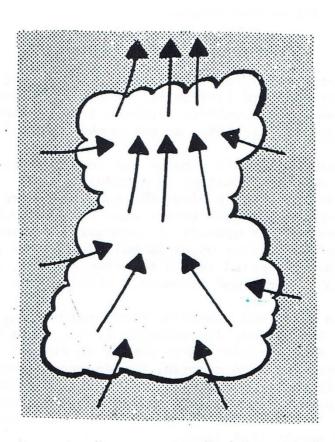
Weather Hazards (3)

SECTION 4. THUNDERSTORMS

1. General

The thunderstorm is a local storm which is produced by a cumulonimbus cloud and is always accompanied by lightning and thunder. Thunderstorms are particularly dangerous for pilots because they are almost always accompanied by strong gusts of wind, severe turbulence, and icing. Heavy rainshowers normally accompany the thunderstorm, and hail is not uncommon. Since thunderstorms are so dangerous to a pilot, he is frequently provided with information as to the existence and location of thunderstorms. This section describes the structure, general types, and hazards of thunderstorms so that the importance of the information provided to pilots will be understood.

2. Formation

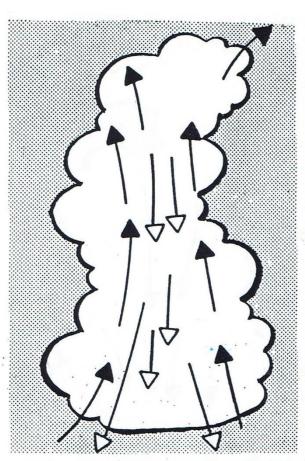

- a. In order for a thunderstorm to form, the air must have sufficient water vapor, be unstable, and (initially) be forced upward. The first updrafts can be caused by convection currents from surface heating, sloping terrain, a front, <u>converging</u> winds, or any combination of the above.
- b. As the upward moving air expands and cools, it causes condensation of the water vapor and the formation of a cumulus cloud. The process of condensation releases heat which slows the cooling caused by expansion. If this saturated updraft becomes warmer than the surrounding air, its lower density causes the updraft to increase the speed of its upward movement as more and more water vapor is pulled into the cloud and condenses, the cloud builds upward into a towering cumulus, and finally becomes a cumulonimbus cloud and produces a thunderstorm.
- c. When air is moist and unstable, thunderstorms may be caused by daytime heating of the ground, low pressure areas, winds moving up a slope, or fronts. Even dry air masses coming in contact with moist air can cause thunderstorms. Once started, thunderstorms generally move with the winds aloft and may travel a considerable distance from their source. Thunderstorms caused by a front can move well ahead of the front as a squall line. Thunderstorms formed over mountains may move many miles out over the nearby flat lands.

3. Life-Cycle

All thunderstorm <u>cells progress</u> through three <u>stages</u> called the <u>lifecycle</u>. These stages are (1) the cumulus stage, (2) the <u>mature</u> stage, and (3) the <u>dissipating</u> stage. The difference between a severe and a less severe thunderstorm is related to the length of time and area covered when it is in the mature stage. Local air mass thunderstorms have a life-cycle from about 20 minutes to 15 hours, and are one type of thunderstorm. The other type covers larger areas, such as squall lines in advance of fronts, and may last as long as 24 hours.

4. Cumulus Stage

Although most cumulus clouds do not become thunderstorms, the initial stage of a thunderstorm is always a cumulus cloud. The main feature of the cumulus or "building" stage is the predominant updraft which may extend from the earth's surface to several thousand feet above the visible cloud top. During the early period of this stage the water drops in the cloud are very small but they grow into raindrops as the cloud builds upward.

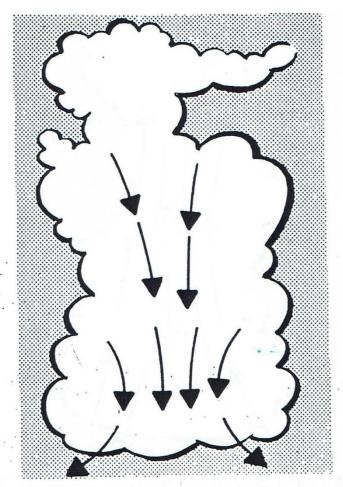


Cumulus stage of a thunderstorm cell showing all upward pertical currents or updrafts.

Figure 1

5. Mature Stage

- a. The mature stage begins when drops are thrown out from the updrafts, or they become so large that the updraft can no longer hold them or lift them upward, and the drops begin to fall. This occurs approximately 10-15 minutes after the cloud has built upward above the freezing level.
- b. As the raindrops fall they pull air with them. This is a major factor in the formation of downdrafts which characterize a thunderstorm in the mature stage.
- c. The air being pulled downward by the falling rain is cooler than the surrounding air, and the pull caused by the falling raindrops speeds up its downward movement. Throughout the mature stage, downdrafts continue to develop and exist at the same time as the updrafts.



Mature stage of a thunderstorm cell. Downdrafts are passing through updrafts. The mature stage has the greatest vertical shear and is the most turbulent stage in the life-cycle of any thunderstorm.

Figure 2

6. Dissipating Stage

The dissipating stage begins when downdrafts <u>predominate</u>. When the updraft is too weak to hold the raindrops, precipitation falls through the upd raft. If the updraft is strong enough to prevent precipitation from falling through it, the precipitation may fall just outside the upward current. Whichever happens, the effect of the precipitation is to increase the density of the air by pulling cooler air downward with it, and to slow the updraft by the action of falling through it. The updraft will be slowed and finally reversed so that it becomes a downdraft. The downdraft and precipitation cool the lower part of the storm cloud and the surface over which it lies. The in-flow of water vapor to the cloud is stopped and the storm dissipates. When all rain and hail have fallen from the cloud, the dissipating stage is complete.

Dissipating stage of a thunderstorm cell. Vertical currents are all downdrafts. The rising effect has ended, and precipitation formation has stopped.

Figure 3

7. Thunderstorm Hazards

a. Turbulence

- (1) All thunderstorms are turbulent, and some are <u>potentially</u> destructive to aircraft. Almost any thunderstorm has the <u>potential</u> to produce "severe" turbulence and some may produce turbulence classified as "extreme."
- (2) Turbulence should also be expected outside of the area of the visible cloud and in the <u>case</u> of severe thunderstorms, "severe" to "extreme" turbulence can be encountered several thousand feet above and 20 miles laterally from the storm.

b. Hail

- (1) Hail is a ball or irregularly shaped piece of ice ranging in size from approximately .6 centimeters to 13 centimeters in diameter. Large hailstones usually have alternating layers of clear and white ice. In general large hail and severe turbulence occur in the same storms.
- (2) Hail and turbulence are nearly equal in being the greatest hazard to aircraft produced by a thunderstorm. Hail can cause severe damage to surfaces such as the front edge and tops of the wings. In extreme cases hail has broken out aircraft windows.

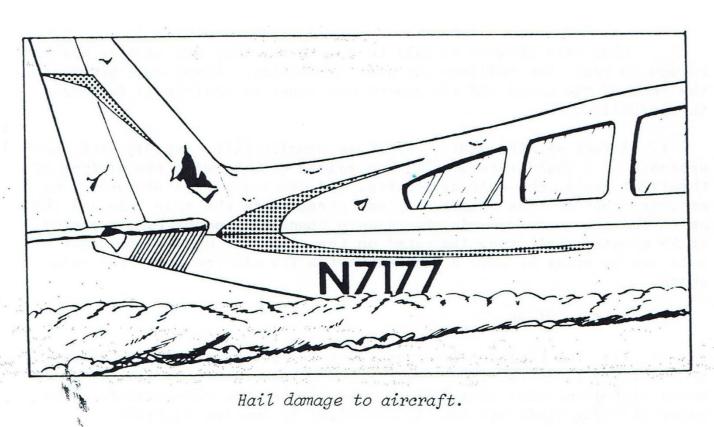
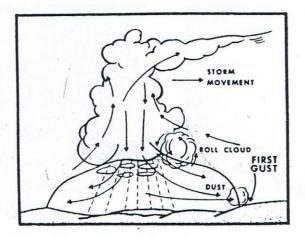


Figure 4


- (3) Frequently hail is carried aloft by updrafts and thrown out of the top or sides of the clouds; it may be encountered in clear air several miles from the thunderstorm. Most thunderstorms have hail in the interior of the cumulonimbus cloud. In a large percentage of the cases, the hail melts before reaching the ground, but this does not make it any less of a danger to the pilot who may encounter it aloft.
- c. Lightning. The electricity produced by a thunderstorm is rarely a great hazard to the structure of an aircraft, but its general hazards include:
 - (1) Temporary loss of vision at night due to the sudden flash of light.
 - (2) Damage to the electronic equipment.
 - (3) Holes in the aircraft exterior covering due to actual hits by lightning.
- d. Icing. Clear ice accumulation in thunderstorms above the freezing level can be so rapid that an aircraft may become incapable of keeping its altitude and/or attitude.
- e. Precipitation/Low Ceiling and Visibility. A thunderstorm contains considerable amounts of liquid water, but this moisture is not necessarily falling to the earth as rain. Water drops are carried aloft by the updrafts or may be held in the updrafts so that visibility is reduced to near zero in the thunderstorm.

When rain showers do fall to the earth, they are usually heavy enough to cause low ceilings and poor visibility. Also, dust between the base of the cloud and the ground may cause an additional decrease in visibility.

f. Effect on Altimeters. Pressure usually falls rapidly with the approach of a thunderstorm. It then raises quickly with the arrival of the first gusts, the cold downdrafts, and the heavy rain showers. The pressure then returns to the original pressure as the rain ends and the storm moves on. This cycle of pressure change may occur over a period of 15 minutes. Altitude indicated on the altimeter during the heavy rain may be wrong by over a hundred feet a few minutes after the rain stops.

g. Surface Winds

(1) The horizontal outward movement of the downdrafts in the area unde a thunderstorm causes a rapid change in wind direction and speed (low-level wind shear) in the area around the thunderstorm. The gusty shifting winds are usually hazardous to landing aircraft.

Cross section of a thunderstorm showing location of surface wind gusts, and other turbulent areas relative to the movement of the storm. Surface gusts and rotating air motion can be extremely hazardous to aircraft flying at low altitudes, landing, or departing from airports.

Figure 5

(2) Usually the approach of a thunderstorm is preceded by the first gust and low level wind shear, then the <u>roll cloud</u>, and finally, the rain. Often the surface winds pick up and carry dust and small light objects as the thunderstorm moves, so that the approach of the storm can be seen. The first gust is frequently the strongest wind observed at the surface during the thunderstorm and it may reach a speed of 100 knots in extreme cases. The roll cloud is not always present, but it is found most frequently on the front edge of fast moving fronts or squall lines and indicates extremely turbulent conditions.

h. Tornadoes

(1) <u>Tornadoes</u> occur only with the strongest and most turbulent thunderstorms. They are strong cone-shaped spirals of air, mixed with cloud moisture and dust. They range from 100 feet (30 m.) to half a mile (.8 Km.) in diameter. Pressure is extremely low in the center of the spiral cone and wind speeds are probably up to 200 knots. Tornadoes appear as <u>funnel</u>-shaped clouds from the base of thunderstorms and usually move at a speed of 25 to 50knots.

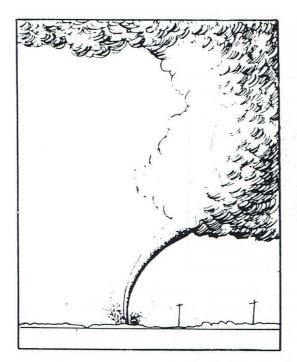


Figure 6

- (2) Technically, the funnel or spiral of air must touch the ground to be called a tornado. When they occur over water, they are called waterspouts. When the characteristic spiraling clouds extend downward from the cloud base but do not reach the surface, they are called funnel clouds.
- (3) Frequently, cumulonimbus mamma clouds occur in connection with strong turbulent thunderstorms and tornadoes. Tornadoes occur with individual separate thunderstorms at times but they more frequently occur with cold fronts and squall lines.

i. Squall Lines

- (1) A squall line is a narrow band of active thunderstorms. They are considered non-frontal because they often develop a few hundred miles ahead of a cold front in moist unstable air. The line may be several hundred miles long and may vary in width up to 50 miles.
- (2) The squall line often contains severe, long-lasting thunderstorms. It is the major hazard to heavy aircraft that are flying by use of instruments due to restricted visibility.

 A squall line usually forms quickly and moves rapidly. It generally completes its life-cycle within 24 hours and reaches maximum intensity in the late afternoon or early night.

GLOSSARY

ACCOMPANY: verb; (1) to go with somebody.

Ex. John is going there too, why don't you <u>accompany</u> him so that he won't have to go alone.

(2) to occur at the same time

Ex. The weather report said to expect heavy showers accompanied by strong winds.

CASE: noun; an instance or occurrence of something

Ex. Normally hail is about 2.5 cm in diameter or smaller, but in this <u>case</u> it was as big as an egg.

CELL: noun; a portion of the atmosphere that functions as one unit

Ex. A high pressure cell has covered this area for the last 72 hours.

Ex. Sometimes when you are flying at a high altitude you can see three or four d ifferent thunderstorm cells at the same time.

CONVERGE: verb; to move toward one point or to come together

Ex. There is a big traffic problem in some of the older cities because the main highways leading to the city converge in the downtown area.

Ex. The winds <u>converge</u> at the center of the low-pressure area, then rise upward.

CYCLE: noun; a series of regular changes that usually lead back to the same starting point or condition.

Ex. The circulation <u>cycle</u> is very simple; the air at the surface is heated, it rises, then at high altitudes it is cooled and sinks back to the surface. When it is at the surface the <u>cycle</u> starts again.

DISSIPATE: verb; to separate into smaller and smaller parts until it no longer exists.

Ex. The fog will dissipate in about two hours

Ex. This is just a local summer storm; they form, rain, and <u>dissipate</u>, all in about 30 minutes.

FUNNEL: noun; a cone-shaped object, open at the top and bottom, used as a guide when pouring into a small opening

Ex. He used a funnel when he poured the water into the bottle.

GUST: noun; a sudden, short-time increase in wind speed

Ex: Wind speed is 10 knots with gusts up to 20 knots.

LATERAL: adjective; concerning the side, located at or moving to or away from the side

Ex. In this aircraft the pilot has good vision to the front, but <u>lateral</u> vision is limited, and he can't see to the rear at all.

LIGHTNING: noun; the flash of light produced when atmospheric electricity jumps from one cloud to another cloud, or from a cloud to the ground

Ex. The storm didn't produce much rain but there was a lot of <u>lightning</u>

MATURE: adjective; fully developed

Ex. That tree is still young, when it is mature it will be at least 20 meters tall.

Ex. The cumulonimbus cloud of a <u>mature</u> thunderstorm may extend as high as 50,000 feet.

POTENTIAL: noun; a possibility that can become an actual thing or happening

Ex. He has only had a few hours of flying lessons but I can see. that he has the
potential to become a good pilot.

POTENTIAL: adjective; capable of happening

Ex. The report advised the pilots that there were <u>potential</u> thunderstorms in the area.

POTENTIALLY: adverb form of potential

PREDOMINANT: adjective; main, primary or strongest characteristic or feature

Ex. The <u>predominant</u> feature of a thunderstorm is the vertical development of the cumulus cloud.

PREDOMINATE: verb; to be the strongest feature

Ex. Although there are some downdrafts in this stage of the .storm, updrafts <u>predominate.</u>

PROGRESS: verb; to move forward or to continue to develop

Ex. The front is expected to <u>progress</u> southward at about 15 miles per hour.

Ex. The cumulus cloud <u>progressed</u> into a cumulonimbus, then into a thunderstorm; all in about 45 minutes.

ROLL CLOUD: noun; a ball-shaped cloud that sometimes forms at the front edge of a thunderstorm

Ex. A roll cloud indicates severe turbulent conditions.

STAGE: noun; a step in a development, progress, or change

Ex. The first stage of every thunderstorm is a cumulus cloud.

TORNADO: noun; a destructive storm characterized by very high speed winds rotating in a spiral cone-shaped pattern. The cone reaches to the ground and causes great damage.

Ex. A tornado went through part of the town and destroyed 400: houses.

WATERSPOUT: noun; a tornado that forms over water, i.e., the sea, etc.

Ex. A thunderstorm that develops in a maritime area may also produce waterspouts.

Language Exercises

l.	NFW	TERMINOLOG	GY: Ora	l Exercises

NEW	TERI	MINOLOGY: Oral Exercise	S				
1.	th		e than once, and you r	ollowing sentences. Some of may have to make the word words in the spaces.			
		accompany	converge	cycle			
		lightning	progress	mature			
		gusts	stage	dissipate (-ing)			
	a.	Occasionally in a thunder tree and start a fire.	storm,	will hit a tall building or a			
	b.	He is a very	person, he acts mu	ıch older than his age.			
	C.	The atmosphere follows then returns to the earth		circulates; the hot air rises			
	d.	The first o	f any thunderstorm is a	a cumulus cloud.			
	e.	Local thunderstorms dev					
	f.	The winds in a low-press system; that is why we s		at the center of the			
	g.	As a migratory air mass _ the surfaces it passes ov		its path, it is modified by			
	h.	n. Usually just before a storm arrives there is a series of strong					
		of wind.					
	i.	You can expect any thun turbulent winds.	derstorm to be	by rain, hail, and			
	j.	During the cumulus currents are moving upw		erstorm most of the air			
	k.	The thunderstorm is in to		when most of the air			
	l.	All thunderstorms are si same three stages.	milar because they all	through the			
	m.	Unless a storm is		d lightning, it is not			
	n.	The wind speed is 10 knd	ots with	up to 20 knots.			
	0.	After the initial updrafts	start in a thunderstorr	m, the air in the surrounding			

area begins to _____ at the base and rise also.

CITC	_	ot try to write the words in	
	case	potential (-ly)	tornado
	cell	predominant	waterspout
	funnel	predominate	
	laterl (-ly)	roll cloud	
a.	It is easier to pour	water into a bottle if you h	ave a
b.	Helicopters can mo	ove in all directions, up and	down, forward and backward,
	and	·	
C.			lass, but he won't study or do his
	homework, so his g		
d.	You may have a tor country.	nado, but don't expect to	see a in a desert
e.	Thunderstorms usu	ually are over in an hour an	d a half, but in the
	of a squall line they	may last up to 24 hours.	
f.	A squall line is a ser a cold front.	ies of thunderstorm	that develop in advance of
g.	Updrafts	in the cumulus stag	e of a thunderstorm.
h.	In the United State		ovement of cold air. is from the
i.	The rotor cloud and signs of severe turk		like each other, and they both are
j.	Aground.	is a vertical vortex of rapid	lly rotating air that touches the
k.	Every thunderstorn	n goes th	rough three stages in its life-cycle.
l.	Tornadoes and wat	erspouts begin as a	cloud.
m.		danger of any severe	thunderstorm is that tornadoes car
	develop.		

2. Select words from the list below to complete the following sentences. Some of the

II. SENTENCE PRACTICE: Oral Exercises

NOTE: Written sentences tend to be longer and more complicated than spoken sentences. Since they are printed the reader can re-read them several times If he has difficulty in understanding them. When sentences are spoken the listener usually only has one chance to hear the sentences. Written sentences can be changed to spoken sentences by making them into a number of shorter simpler sentences.

Use the examples below as a guide to change the following written sentences to spoken sentences.

Examples:

Written: The thunderstorm is a local storm which is produced

by a cumulonimbus cloud and is always accompanied

by thunder and lightning.

Spoken: A thunderstorm is a local storm.

It's produced by a cumulonimbus cloud.

It's always accompanied by thunder and lightning.

Written: The pilot's judgement of turbulence severity may be influenced by the

length of time his plane 18 exposed to turbulence, the amount of

experience the pilot has and the type of aircraft he is flying.

Spoken: The pilot's judgement of turbulence severity may be influenced by three

things.

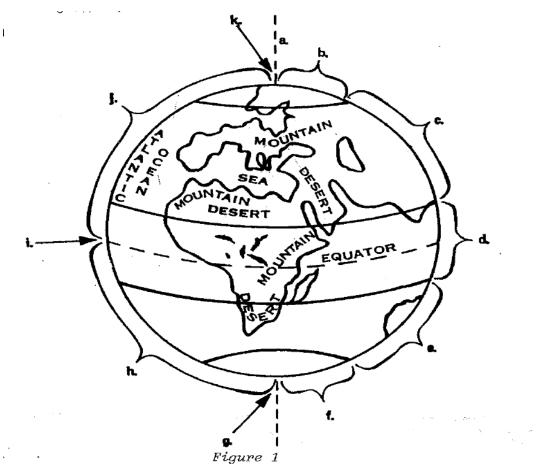
It is influenced by the length of time his plane is exposed to turbulence

It is influenced by the amount of experience he has. It is influenced by the

type of aircraft he is flying.

- a. The upward moving air rises faster and faster until it reaches a height where the temperature of the rising air is cooled to the same temperature of the surrounding air.
- b. An object placed in any moving air current disturbs the flow by causing the wind to change direction of flow to go over or around the object.
- c. Mechanical turbulence is caused by obstructions in the path of the wind and is not caused by meteorological processes in the air ma88 itself.
- d. The landing area may be safely upwind from an obstruction when an east wind is blowing and yet be a turbulent area because it is downward from the same obstacle when a west wind is blowing.

- e. When air passing over a line of mountains has sufficient water vapor to form clouds, standing lenticular and rotor clouds form downwind from the mountain and indicate areas of severe turbulence.
- f. Wind shear can exist at the horizontal boundary between layers of air moving in different directions and/or at different speeds, or it can exist along a vertical boundary when upward or downward currents are in contact with currents moving in a different direction and/or at a different speed.
- g. As more and more water vapor is pulled into the cloud and condenses, the cloud builds upward into a towering cumulus, and finally becomes a cumulonimbus cloud and produces a thunderstorm.
- h. The main characteristic of the cumulus or "building" stage is the predominant updraft which may extend from the earth's surface to several thousand feet above the visible cloud top.
- i. The mature stage begins when drops are thrown out from the updraft, or they become so large that the updraft can no longer hold them or lift them upward, and the drops begin to fall.
- j. Turbulence should also be expected outside of the area of visible cloud, and in the case of severe thunderstorms, "severe" to "extreme" turbulence can be encountered several thousand feet and above and up to twenty miles laterally from the storm.
- k. Clear ice accumulation in thunderstorms above the freezing level can be so rapid that an aircraft may become incapable of keeping its altitude and/or attitude.
- 1. Usually the approach of a thunderstorm is preceded by the first gust and low level wind shear, then the roll cloud, and finally the starting of the rain.


III.	VOCA	BULAF	RY EXPANSION:	Oral Exercises	5	
	1. Sele	ect wo	rds from the lists	given below to	o complete the senter	nces.
	a.	inter	nsify	intense	intensity	
		(1)	The strength of	the updrafts wi	III	
			as the cumulus s	stage progresse	25.	
		(2)	There is some d	ifficulty in ident	tifying the	
			of turbulence be	ecause it deper	ids on the pilot's judg	ment.
		(3)	A pilot may enco	ounter	turbulence	e even
			though he is sor	ne distance fro	m the thunderstorm.	
		(4)	When turbulen	ce reaches "ext	reme"	
			it may be impos	ssible to contro	I the aircraft's altitude	e and attitude.
	В.	vary		variation	variable	
		(1)	CAT is a	of	wind shear turbulence	e that exists
			at high altitudes			
		(2)	Its occurrence _		_according to the sea	son; it is more
			frequent during			
		(3)				; they may come
		(4)	from any direct		£	doute devises
		(4)	rne armospher	ic pressure	from	uay to day even

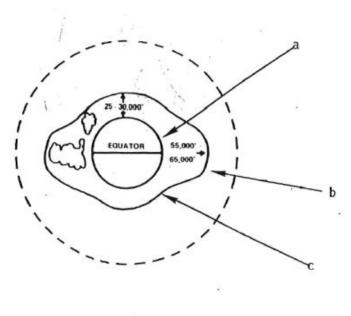
though the temperature might not change.

C.	pre	dominate	predominant	predom	inantly
	(1)	The	feature of med	chanical turbulence is	that it is
		produced by some kind	of object or obst	acle.	
	(2)	In some areas a particu	lar group of weat	her conditions may _	
		for a long period of time	e.		
	(3)	Cold air masses move _		from northwest to so	outheast in
		the United States.			
	(4)	When downdrafts begin	n to	over updrafts, t	he mature
		stage of the thundersto	rm is over.		
d.	con	sider	consideration	conside	rable
	(1)	All pilots should recogn	ize that there is _	danger a	associated
		with flying in and around	d thunderstorms.		
	(2)	When advised that a thu	understorm is in t	he area, a pilot may w	vant to
		changir	ng his plans to avo	oid the general area of	the storm.
	(3)	When deciding where t	co locate an airpo	rt,	should be
		given to such things as	•	ds, high buildings and	other
		obstructions in the area	a, etc.		
	(4)	The strong winds and h	ail that accompar	nied the storm did	
		damage to the aircraft t	that were on the	ground.	

e.	dev	elop	development	developmental
	(1)	The first stage in	the	_ of any thunderstorm
		is the cumulus s	stage.	
	(2)	It is not unusual	for a local thunderstorm	n to
		and dissipate, a	ll within a period of an ho	our to an hour and a half.
	(3)	In the	or building sta	ge of a thunderstorm it is not
		unusual for rain	and hail to be lifted upw	vard and thrown out from the
		top of the cumu	ılus cloud.	
	(4)	Any severe thur	nderstorm may	funnel clouds, and
		any funnel cloud	l may	into an actual tornado.

Review: UNIT 1

- 1. Refer to the illustration above and identify the following:
 - a. The broken line identified by letter <u>a</u> indicates the ______ .
 - b. The zone identified by letter <u>b</u> is the ______.
 - -<u>----</u>-
 - c. The zone identified by letter \underline{C} is the _____ .


 - d. The zone identified by letter <u>d</u> is the _______.
 - e. The zone identified by letter <u>e</u> is the ______.

	f.	The zone identified by letter <u>f</u> is the						
	g.	The arrow identifled by letter <u>g</u> indicates the location of the						
	h.	The area of the earth identified by letter \underline{h} is the						
	i.	The broken line identified by letter \underline{i} is the						
	j.	The area of the earth identified by letter \underline{i} is the						
	k.	The arrow identified by letter <u>k</u> indicates the location of the						
2.		e the information you studied in Unit 006-1A to answer at least 13 of the following 16 estions correctly.						
	a.	What are the two movements of the earth?						
	b.	What is the source of the light/heat radiation received by the ear th?						
	C.	How long does it take the earth to complete one rotation?						
	d.	How long does it take the earth to complete one revolution around the sun?						

What is the season in the southern hemisphere when it is summer in the northern hemisphere?
What are the five temperature zones?
What are clouds formed from?
Identify or name three types of precipitation.
What is the general rule that explains why high regions usually have cooler temperatures than low regions in the same area?
What are three of the factors that determine the climate of an area?
h .

What is the zero point that elevation is measured from?
Which direction does a north wind blow from?
What instrument is used to measure temperature?
What are the names of four of the different kinds of storms?
What is humidity?

REVIEW: UNIT 2

- Fígure 2
- 1. Refer to the illustration above and identify the following:
- a. The layer of air indicated by arrow <u>a</u> is the ______ .
- b. The layer of air indicated by arrow <u>b</u> is the______.
- c. The border between the two layers of air, indicated by arrow is called the

2.	Write the following characteristics in the correct columns below:		
	uses a glass tube	fluid mo	oves to show pressure change
	uses a hollow container	indicato	or moves to show pressure change
	uses a liquid	is simila	r to an altimeter
	uses a gas	is easy t	to move around
needs frequent adjustment is more accurate		accurate	
	a. Mercurial Barometer		b. Aneroid Barometer

3.	. Refer to the illustration above and fill in the blanks in the follow- ing statements .		
	a. Water freezes at	_°C; it boils at	<u>°</u> C.
	b. Water freezes at	°F; it boils at	_ °F
4.	Use the information you stud 18 questions correctly.	ied in Unit 006-1B to ans	swer at least 15 of the following
	a Which layer of air contair	ns 75% of the atmosphe	re hv weight?

b. In which layer of the atmosphere does most of the weather take place?

	Name two instruments that are used to measure atmospheric pressure.
	What type of barometer is used to measure atmospheric pressure and is also used to measure altitude when it is part of another instrument?
	Which way will the mercury in a barometer move when the atmospheric pressure decreases?
	If you are told that the mercurial barometer reads 30.13, " thirty point one three," how high is the column of mercury in the baro- meter?
	If the atmospheric pressure increases, will the hollow metal pressure sensitive container in the aneroid barometer expand or will it be compressed?
	What instrument is used to check the accuracy of an aneroid barometer?
	At what rate does pressure decrease with altitude in the lo of the atmosphere?
•	

j.	What is the standard lapse rate in the troposphere?			
k.	What are the properties of water in regard to temperature?			
I.	If the barometer of a station at 2,000 feet elevation shows a pressure of 27.95, what sea level (converted) pressure would it report?			
m.	What unit of atmospheric pressure is used to show pressure on a weather map?			
n.	If an airport at 1,000 feet elevation has a converted sea level pressure of 29.92 inches of mercury, and a plane's altimeter has been set to read 29.92, what altitude will be shown on the altimeter when the plane is on the ground at that airport?			
Ο.	What are the two types of air layers that do not show. a standard lapse rate?			
p.	What is the technical name of a layer of air that does not show temperature change with height?			

٦.	What is the technical name of a layer of air that shows temper- ature increases with height?
•	What are the characteristics of standard atmosphere in regard to surface temperature, surface pressure, and lapse rate?

REVIEW: UNIT3

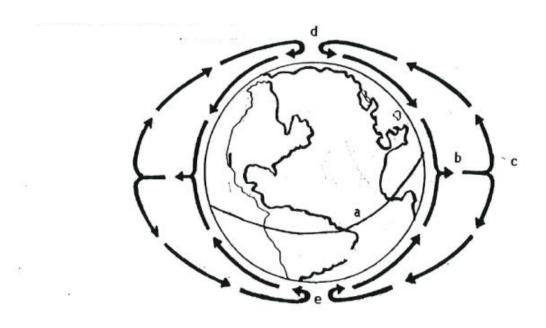


Figure 4

•	Refer to the Illustration above and use the following terms to fill in the blanks below.				
	Some of the terms may be used more than once.				
	cold	rise	south	descend	hot
	air	north	pole(s)	equator	
	a. The line identifi	ed by letter <u>a</u>	is the		·
	b. The sun causes	the air at the		(letter <u>a</u>) to becom	ne
	c. The hot		expands (beco	mes less dense) and	·
	d. The arrow at let	tter <u>b</u> indicate	s that the		air is rising.
	e. The arrows at letter c indicate that the hot				aloft travels
	w	ard and		toward the	
	f. As the hot air al	oft travels to t	he		(letter d) and
	the (letter e), it cools.				

g.	When air becomes	it cor	itracts (becomes m	ore dense).
h.	The cold air	to	the surface near th	e north and south
i.	The			ne surface to the
	Figure 5High pressur pressure areas above the (Northern Hemisphere).	ne surface pressu	A 6High pressurer are areas at the statement Hemisphere).	e and low urface
2.	Refer to the illustrations below. Some of the terr Clockwise counterclockwise.	ns may be used more a		in the blanks
	c. When the wind flow to pressure readings	ents a wind flow indicate a _	pressur eed to have atmosp	me area becausemovement. Theric lines in order
	a "high" or a "low."			

d.	Figure 5B represents a	_pressure area.
e.	We know 5B represents a	pressure area
	because the wind flow is in a	direction.
f.	Figure 5, A and B, shows high and low pressure areas above the surf	ace. In relation
	to the isobars the wind has a	·
g.	Figure 6A represents a	pressure area.
h.	In figure 6A, the wind flow is in a	direction.
i.	Figure 6B represents a pressure area; the	
	wind flow is in a direction.	
j.	In figure 6, A and B, the wind moves in a	in relation
	to the isobars.	
k.	At the surface (figure 6) the wind in a high pressure system flows pre	ssure and
	; in a low pressure system it flows	and upward.

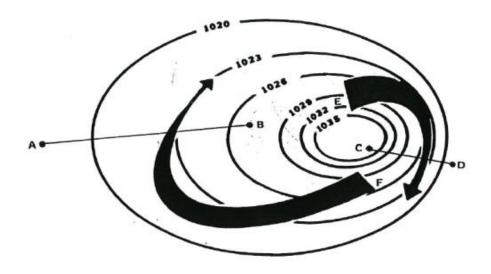


Figure 7

3.	Refer to the figure above and answer the following questions. You may use short answers.
	a. Does figure 7 show a "high" or a "low"?
	b. What direction does the wind flow?
	c. What type of pressure gradient exists between point A and point B?
	d. What type of pressure gradient exists between point C and point D?
	e. What type of wind flow (as to speed) occurs in the flow indicated by arrow E?
	f. What type of wind flow (as to speed) occurs in the flow indicated by arrow F?

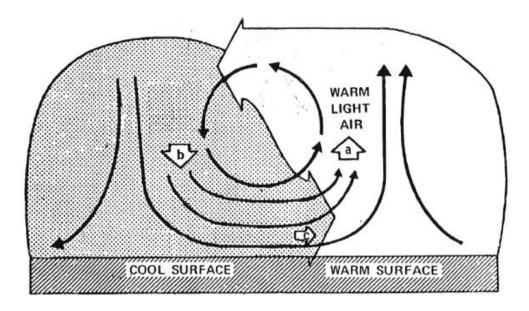


Figure 8

4. Refer to the illustration above and use the following terms to fill in the blanks below. Some of the terms may be used more than once.

air		light	sinks	
war	rm	dense	advection	
coo	ol .	rises		
	. A warm or cool surface causes the become warm or cool.			_above it to
b.	Warm air beco	omes	,cool air becomes	
c Light air			: dense air	

	Arrow <u>a</u> indicates the upward currents that are produced when arm air
e.	Arrow <u>b</u> indicates the downward currents produced when cool air
f.	Arrow \underline{c} indicates a current parallel to the ground, the current from the coole
	area to the warmer area is called
	se the information you studied in Unit 006-2A to answer at least 16 of the llowing 19 questions correctly.
а.	What is the direction of air flow between a high pressure system and a low pressure system?
b.	What two actions normally take place when air is warmed?
C.	What two actions normally take place when air is cooled?
d.	What is the effect of cooling on the density of air?
e.	What is the effect of warming on the density of air?
f. 1	the general direction and height of the warm air f the equator?

What force causes air in the northern hemisphere to flow to the right of its normal path?
What conditions produce a region of low-pressure air?
What conditions produce a region of high-pressure air?
What is the direction of windflow in a low pressure system?
What is the direction of windflow in a high pressure system?
What are the lines that connect points of equal pressure on a weather map called?
How is the pressure gradient described when the isobars are close together?

Wha	at is the flow of air parallel; to the ground between a local warm air mass and
coo	l air mass called?
Wha	at is the jet stream?
Wha	at are the pressure systems that regularly move from one area of the earth t
ano	ther called?
Wha	at two characteristics does an air mass take from the region in which it is formed

REVIEW: UNIT 4

1. Refer to the illustrations (figs. 9, 10, and 11) and identify the general cloud type shown in each.

a. Figure 9 shows a	
	cloud.
b. Figure 10 shows a	
	cloud.
C. Figure 11 shows a	
	cloud

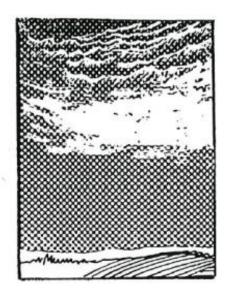
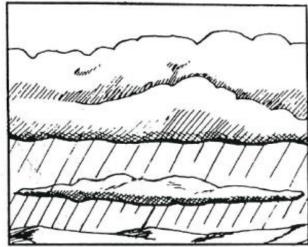
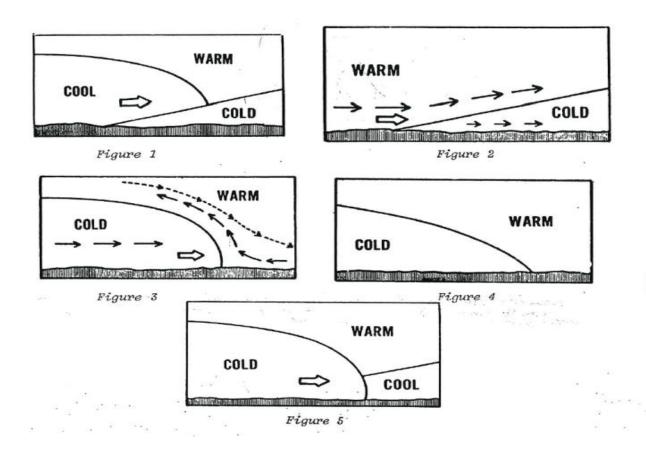


Figure 9

Figure 11




Figure 12 Figure 13

2.	Refer to the 1llus each by full name	trations above (figures 12 and	13) and identify the c	loud type in
	a. Figure 12 show b. Figure 13 show	s as as		cloud. cloud.
3.	List each of the fo	llowing cloud names in the pro	pper group below.	
	Cumulus	cirrocumulus		altostratus
	altocumulus	stratocumulus		cirrus
	stratus	cirrostratus		
	Group 1	Group 2	Group 3	
	Low Clouds	Middle Clouds	High Clouds	

4. Write the letter that identifies each cloud name in the blank after the abbreviation for that name.			
a. cirrus	TCU		
b. cirrocumulus	St		
C. cirrostratus	Cb		
d. standing lenticular cirrocumulus	Ns		
e. standing lenticular altocumulus	Sc		
f. altocumulus	Cu		
g. altostratus	Acsl		
h. altocumulus castellanus	As		
i. cumulus	Accas		
j. cumulonimbus	Ac		
k. towering cumulus	Ccs1		
I. stratus	Cs		
m. nimbostratus	Cc		
n. stratocumulus	Ci		
5. Use the information you studied in 006-2B to answer at least 12 of the follow	ring 15 questions correctly.		
a. What kind of air do cumulus clouds form in?			
b. What kind of air do stratus clouds form in?			
c. What are cirroform clouds composed of?			

d. 	What does the prefix/suffix " nimbo (-us)" indicate when it is attached to a cloud name?
e.	What does the suffix "fractus" indicate when it is attached to a cloud name?
f.	Where does a standing lenticular cloud usually form?
g.	What type of cloud has such extensive vertical development that the base can be at 6,500 feet and the top over 50,000 feet?
h.	Where is the anvil of a cumulonimbus cloud located?
i.	What causes towers to form in cumulus clouds?
j.	What are the three basic types of clouds?
k.	what are the three altitude classifications that clouds are divided into?

REVIEW: UNIT 5

- 1. Refer to the illustrations above (figs. 1--5) and identify the fronts shown.
- a. Figure 1 is a cross-section representation of a/an
- b. Figure 2 is a cross-section representation of a/an
- _____
- c. Figure 3 is a cross-section representation of a/an
- _____
- d. Figure 4 is a cross-section representation of a/an
- e. Figure 5 is a cross-section representation of a/an

Us	e the information you studied in Unit 006-3A to answer at least 13 of the following
16	questions correctly.
a.	What is formed in the area of contact when two different air masses meet?
 b.	Which air mass takes a characteristic wedge shape when a warm front advances?
C.	What type of front occurs when warm air replaces cold air?
d.	What type of front occurs when cold air replaces warm air?
e.	What type of front occurs when a warm air mass is 1ifted above two colder air masses?
	NAN at two afficent accompanies we reliberate a cold air reason we the accompanies reason in
Т.	What type of front occurs when neither the cold air mass nor the warm air mass is advancing?
g.	What are the two types of occluded fronts?

h. 	What type of front will often produce a squall line in advance of the front?
i. 	Which type of front usually moves the most rapidly across surface?
j.	Which type of front produces cirroform clouds up to 500 miles in advance of the front?
k.	Which type of front does not have warm air contacting the surface?
I.	Which type of front is usually associated with low ceilings and limited visibility?
m	. Which type of front is usually associated with sudden storms, strong gusty winds, and turbulence?
	Which type of air mass (after the front has passed) is as with clear air and unlimited visibility.

0.	When does an occluded front occur?
p.	Which type of front usually has a steep frontal slope?

REVIEW: UNIT 6

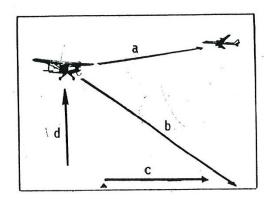


Figure 6

- 1. Refer to the illustration above and fill in the blanks below.
- a. Arrow <u>a</u> indicates ______ visibility.
- b. Arrow <u>b</u> indicates _____ visibility.
- C. Arrow <u>c indicates</u> visibility.
- d. Arrow <u>d</u> indicates ______ visibility.

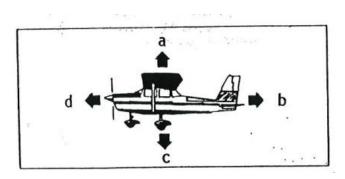


Figure 7

- 2. Refer to the illustration above and fill in the blank below.
- a. Arrow <u>a</u> represents the effect of ______.
- b. Arrow <u>b</u> represents the effect of ______.
- c. Arrow <u>c</u> represents the effect of _____

.

Figure 8

Figure 9

3. Refer to the illustra	tions above and fill in the blank below.	
a. Figure 8 represe	ents an accumulation of	ice on a wing.
b. Figure 9 represe	ents an accumulation of	ice on a wing.
4. Write the letter that	at identifies each term in the blank after the characteristic,	description for
that term.		
a. fog	1. A hard smooth transparent ice.	
b. dewpoint	2. A white, nontransparent rough, coarse i	ce.
c. haze	3. A cloud with its base on the earth's d. d	lrizzle surface.
d. drizzle	4. Water in the form of gas mixed in the air	r.
f. clear ice	5. Ice formed on a surface directly from evin the air.	vaporated water
g. rime ice	6. Asmall amount, only sufficient to show exists.	that something
h. water vapor	7. Particles of 1iquid having temperature	s below 0.
i. frost	8. Restriction to visibility caused by dust in the air.	or salt particles
j. trace	9. Precipitation in the form of very small of descend very slowly.	Irops that
	10. The saturation temperature of a local	air mass.

5.	Use the information you studied in Unit 006-3B to answer at of the following 16 questions correctly.
a.	
b.	What does air-to-ground visibility refer to?
c.	What does horizontal surface visibility refer to?
d. 	What does vertical visibility refer to?
e.	What are the general characteristics of stable air as to visibility?
f.	What are the general characteristics of unstable air as to visibility?
g.	What are the three types of solid particles that are often lifted from the surface and blown by winds so that they restrict visibility?

h. 	What is th	e term for the downward force that acts on an aircraft?
i.	What is the	e term for the force that moves a flying aircraft forward ?
j.	What is the	e term for the upward force that acts on a flying aircraft?
k.	What is the	e term for the force that opposes the forward movement of a flying aircraft?
l.	What type	of icing occurs on the outside surfaces of a flying aircraft?
m.	What type	e of icing occurs as a result of surface water being thrown up on an aircraft?
n.	What type	e of icing affects the flow of air to an aircraft's engine?

Ο.	What type of ice is the result of combined clear and rime ice?		
p.	What four terms, in the order from not dangerous to very dangerous, are used to describe icing intensity?		

REVIEW: UNIT 7

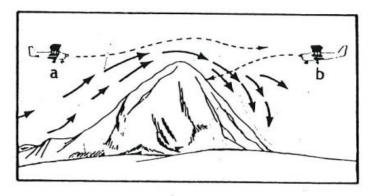


Figure 10

1. Refer to the illustration above and fill in the blanks below.

In relation to the airflow:

Aircraft <u>a</u> is on the ______ side _____ side.

Figure 11

- 2. Refer to the illustration above and fill in the blanks below.
 - a. Cloud <u>a</u> is a representation of a ______ .
 - b. Claud <u>b</u> is a representation of a ______ .
 - c, In relation to line X--Y, the windflow shown in the illustration is from point

_____ to point _____ .

3. List each of the following types of turbulence in the appropriate column below: convective turbulence thermal turbulence wind shear turbulence clear air turbulence wake turbulence temperature inversion shear frontal wind shear turbulence turbulence high-level mechanical turbulence low-level mechanical turbulence standing wave turbulence a. Turbulence produced by b. Turbulence produced by natural processes: objects: 4. List the following terms used to describe the intensity of turbulence. in the order of increasing amount of turbulence. moderate light severe extreme a. (least)

5.	Use the information you studied in Unit 006-4A to answer at least 15 of the following 19 questions correctly.
a.	When is the atmosphere considered to be turbulent? .
b.	What kind of turbulence is called "chop"?
C.	When is turbulence considered to be occasional?
 d.	When is turbulence considered to be intermittent?
e.	When is turbulence considered to be continuous?
f.	What are the four terms for reporting the intensity of turbulence ?
g.	What are the four types of turbulence?
— h.	What is the cause of convective turbulence?
 i.	What is the cause of mechanical turbulence?

j.	When does wind shear occur?
k.	What do the letters in the abbreviation CAT stand for?
 .	What type of clouds are signs of convective currents?
m.	What are standing lenticular and rotor clouds a sign of?
n.	What causes wake turbulence?
O.	What is the shape of the wake turbulence produced by the wing tips of a moving aircraft?
p.	Which of the four types of turbulence would be expected in a frontal area?
q.	Which of the four types of turbulence would be expected at high altitudes near the jet stream?

r.	Which of the four types of turbulence would be expected above a line of mountains?
S.	Which of the four types of turbulence would be expected near cumulus clouds?

REVIEW: Unit 8

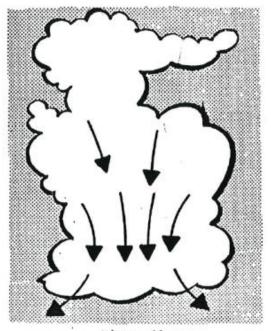


Figure 12

Figure 13

- 1. Refer to figures 12, 13, and 14, and fill in the blanks below.
 - a. Figure 12 is a representation of the_____stage of a thunderstorm.
 - b. Figure 13 is a representation of the ____stage of a thunderstorm.
 - c. Figure 14 is a representation of the _____ of a thunderstorm.

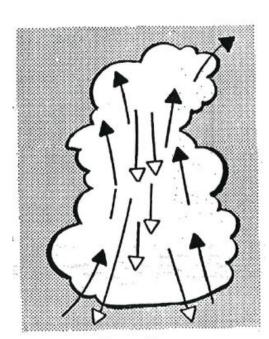


Figure 14

Us	Use the information you studied in Unit 006-4B to answer at least 16 of the following $$				
19	19 questions correctly.				
a. —	What two features always accompany and characterize a thunderstorm?				
 b.	What types of precipitation normally accompany a thunderstorm?				
C. 	What three features must be present for a thunderstorm to form?				
d. 	What three stages make up the life-cycle of a thunderstorm?				
e.	About how long is the life-cycle of a typical local air mass thunderstorm?				
	About how long is the maximum life-cycle of the thunderstorms that form a squall line?				
g.	What kind of drafts predominate in the cumulus stage of a thunderstorm?				

h. What kind of drafts predominate in the dissipating stage of a thunderstorm?
i. In which stage of the life-cycle of a thunderstorm do updrafts and downdrafts exist at the same time?
j. What material is hail composed of?
k. What are the two greatest hazards to aircraft produced by a thunderstorm?
I. Which thunderstorm hazard may cause temporary loss of vision and/or damage to electronic equipment?
m. What does a roll cloud indicate?
n. What type of pressure occurs in the spiral cone of a tornado?

Ο.	o. What is a funnel cloud that touches the ground called?			
p.	What is a funnel cloud that touches the surface of water called?			
q.	What is the technical term for tornadoes that don't touch the surface?			
r.	What is the name of a line of thunderstorms that often develops ahead of a cold front?			
S.	Why are squall lines considered non-frontal storm?			

English Language for RTAF Weather Corps

ภาษาอังกฤษสำหรับสายวิทยาการอุตุนิยมวิทยา

กองทัพอากาศ

Directorate of Air Operations Control

กรมควบคุมการปฏิบัติทางอากาศ

PREFACE

Royal Thai Air Force maintains vision as "One of the Best Air Forces in ASEAN" by developing capability of 3 dimensions which are Air Domain, Cyber Domain and Space Domain. On the basis of balance and sustainability, thus the Air Force will be able to completely carry out security missions by preparing capabilities and use of such capabilities under the authority of the Ministry of Defence. Moreover, all departments under the Air Force must adhere to the mission and unit development. To be accordance with the Air Force Doctrine, B.E. 2560, the Air Force Plan, B.E. 2560, the 20-Year Air Force Strategy (2018 - 1980) and related development plans. Also, the objective of English development of the Air Force is to develop the ability to use English covering all 4 skills (Listening, speaking, reading, and writing) and be able to communicate and apply to work efficiently.

Weather Division, Directorate of Air Operations Control is taking this practice by using English language in Aviation Weather Service System and also joint training. English has also been used in weather briefing and in meteorology technical training to develop personnel performance and efficiency comparable with the international standards, moreover, it has been used as a reference in performing duties and in coordinating with foreign partners.

กองทัพอากาศดำรงวิสัยทัศน์ "กองทัพอากาศชั้นนำในภูมิภาค" โดยการพัฒนาชีดความสามารถ ทั้ง ๓ มิติ ได้แก่ มิติทางอากาศ (Air Domain) มิติไซเบอร์ (Cyber Domain) และมิติอวกาศ (Space Domain) บนพื้นฐานของความสมดุลและยั่งยืน เพื่อให้กองทัพอากาศสามารถปฏิบัติภารกิจหลักด้านความมั่นคง ได้อย่างสมบูรณ์ โดยการเตรียมและใช้กำลังกองทัพอากาศตามบทบัญญัติที่กฎหมายกำหนด ซึ่งทุกหน่วยงาน ภายในกองทัพอากาศต้องยึดถือการปฏิบัติภารกิจและการพัฒนาหน่วย ให้เป็นไปตามหลักนิยมกองทัพอากาศ พ.ศ.๒๕๖๒ ยุทธศาสตร์กองทัพอากาศ ๒๐ ปี (พ.ศ.๒๕๖๑ - ๒๕๘๐) และ แผนการพัฒนาที่เกี่ยวข้อง ทั้งนี้การพัฒนาภาษาอังกฤษของกองทัพอากาศ มีเป้าหมายเพื่อให้กำลังพล กองทัพอากาศได้รับการพัฒนาความสามารถในการใช้ภาษาอังกฤษครอบคลุมทั้ง ๔ ทักษะ (ฟัง พูด อ่าน เขียน) ให้สามารถสื่อสารและประยุกต์ใช้ในการปฏิบัติงานได้อย่างมีประสิทธิภาพ

199

กองข่าวอากาศ กรมควบคุมการปฏิบัติทางอากาศ ได้มีการนำภาษาอังกฤษมาใช้ในการปฏิบัติงานใน ด้านการบริการข่าวอากาศการบิน การฝึกร่วม/ร่วมผสม การบรรยายสรุปข่าวอากาศและการเรียนการสอนใน หลักสูตรสายวิทยาการอุตุนิยมวิทยา เพื่อพัฒนาขีดความสามารถและประสิทธิภาพของกำลังพลของหน่วย เป็นไปตามมาตรฐานสากล และสามารถนำไปใช้อ้างอิงในการปฏิบัติงานและติดต่อประสานกับต่างประเทศได้

Air Chief Marshal

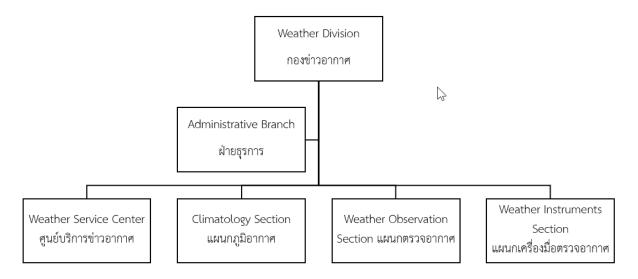
(NAPADEJ DHUPATEMIYA)

Commander

Directorate of Air Operations Control

TABLE OF CONTENTS

	ı	Page
Part I		
	1. Mission of Weather Division (ภารกิจ กองข่าวอากาศ)	201
	2. Organization Chart (การจัดส่วนราชการ)	201
Part II		
	1. Weather supports (สนับสนุนข้อมูลข่าวอากาศ)	202
	1.1 Analyse Forecasts and warnings (วิเคราะห์ พยากรณ์และแจ้งเตือน)	
	1.2 Weather monitoring and weather advices	
	(ติดตามสภาพอากาศและให้ข้อเสนอแนะด้านอุตุนิยมวิทยา)	
	2. Technical skills development (พัฒนากำลังด้านอุตุนิยมวิทยา)	205
	2.1 Weather education and Training (ฝึกอบรมบุคลากรสายงานอุตุนิยมวิทยา)	
	2.2 Prepare handbooks, manuals and training documents	
	(จัดทำ ปรับปรุงเอกสารตำราอุตุนิยมวิทยา)	
Index		209
	- Definitions (นิยามศัพท์)	209
	- References (เอกสารอ้างอิง)	213


Part I

Mission of Weather Division (ภารกิจ กองข่าวอากาศ)

Weather Division is responsible for preparing, coordinating, supervising, controlling and possessing weather observation and forecasting, weather warning, weather service and weather instruments maintenance.

กองข่าวอากาศ มีหน้าที่ เตรียมการ ประสานงาน กำกับการ ควบคุมและดำเนินการเกี่ยวกับการตรวจ อากาศ พยากรณ์อากาศ แจ้งเตือนสภาพอากาศ การบริการข่าวอากาศและเครื่องมือตรวจอากาศ มี ผู้อำนวยการกองข่าวอากาศเป็นผู้บังคับบัญชารับผิดชอบ

Organization Chart (การจัดส่วนราชการ)

1. Weather Division (กองข่าวอากาศ)

- 1.1 Weather Service Center (ศูนย์บริการข่าวอากาศ)
- 1.2 Climatology Section (แผนกภูมิอากาศ)
- 1.3 Weather Observation Section (แผนกตรวจอากาศ)
- 1.4 Weather Instruments Section (แผนกเครื่องมือตรวจอากาศ)
- 1.5 Administrative Branch (ฝ่ายธุรการ)

Part II

1. Weather supports (สนับสนุนข้อมูลข่าวอากาศ)

Prepare operational weather supports corresponding to mission of Royal Thai Air Force and other related branch of the Department of Defense.

สนับสนุนข้อมูลข่าวอากาศสำหรับภารกิจ ทอ.และหน่วยที่เกี่ยวข้อง

1.1 Analyse Forecasts and Warnings (วิเคราะห์ พยากรณ์และแจ้งเตือน)

Continuously analyse the weather report data from meteorological station in order to plot various of weather charts for example, surface chart, wind aloft chart, Skew-T Log P diagram and pressure change chart. Forecast the weather in short, medium and long range forecast as assigned schedule and to provide to requested organization. Report weather information to related organization, including issue warning hazardous weather such as tropical cyclone, strong monsoon and weather-related disasters which bring about the damage to life and property.

วิเคราะห์ข่าวอากาศจากข้อมูลการรายงานข่าวอากาศ เพื่อนำมาเขียนลงในแผนที่อากาศในแต่ละ ชนิด เช่น แผนที่อากาศผิวพื้น แผนที่ลมชั้นบน แผนภูมิเทอร์โมนามิกส์ แผนที่ความกดอากาศเปลี่ยนแปลงเป็น ต้น พยากรณ์สภาพอากาศทั้งในระยะสั้น ระยะกลาง และระยะยาว ตามระเบียบปฏิบัติประจำ และตามที่มี หน่วยงานร้องขอข้อมูล รายงานข้อมูลสภาพอากาศอย่างต่อเนื่องให้แก่หน่วยที่เกี่ยวข้อง รวมถึงแจ้งเตือน สภาพอากาศรุนแรง เช่น พายุหมุนเขตร้อน มรสุมกำลังแรง และภัยพิบัติที่เกิดจากสภาพอากาศอันอาจ ก่อให้เกิดอับตรายต่อชีวิตและทรัพย์สินของทางราชการ

คำศัพท์ที่เกี่ยวข้อง (Vocabulary)

คำศัพท์	ความหมาย	คำศัพท์	ความหมาย
Surface chart	แผนที่อากาศผิวพื้น	Tropical cyclone	พายุหมุนเขตร้อน
Pressure change	แผนที่ความกดอากาศ	Weather report data	ข้อมูลรายงานข่าว
chart	เปลี่ยนแปลง		อากาศ
Wind aloft chart	แผนที่ลมชั้นบน	Skew-T Log P	แผนภูมิเทอร์โม
Willia atort Chart		Diagram	ไดนามิกส์

<u>แบบฝึกหัด</u>

- 1. What type of weather chart that describe the difference of pressure between today and yesterday?
 - a. Surface chart
 - b. Pressure change chart
 - c. Skew T Log P diagram
 - d. Wind aloft Chart

Conversation between A – Flying Officer Yaya (USAF) and B – FS1.Nadej (RTAF)

A: Hello Nadej. What are you doing?

B: Hello Yaya. I'm analyzing the synoptic data

A: That's great. Did you check the warning?

B: I've already checked it.

A: Good Job. Keep doing.

B: Thank you sir.

บทสนทนาระหว่าง A - ร.ต.หญิง ญาญ่า (ทอ.สหรัฐอเมริกา) และ B - พ.อ.อ.ณเดช (ทอ.ไทย)

A: สวัสดีณเดช ทำอะไรอยู่

B: สวัสดีครับญาญ่า ผมกำลังวิเคราะห์ข่าวอากาศประจำชั่วโมงครับ

A: เยี่ยมมาก ได้ตรวจสอบประกาศแจ้งเตือนหรือยัง

B: ตรวจสอบเรียบร้อยแล้วครับ

A: ดีมาก ทำต่อไปนะ

B: ขอบคุณครับ

1.2 Weather monitoring and weather advices (ติดตามสภาพอากาศและให้ ข้อเสนอแนะด้านอุตุนิยมวิทยา)

Constantly monitoring weather hazards and provide meteorological watch, warning and advisory for RTAF missions, threat-warning and threat-mitigation for example, to monitor and provide the weather situation in Line Application or RTAF email. Arrange the staff for weather briefing at the military terminal for aviation mission including prepare staff to brief the weather forecast at the meeting i.e. Operation Center RTAF.

ติดตามสภาพอากาศและให้ข้อเสนอแนะข้อมูลด้านอุตุนิยมวิทยา เช่น การติดตามและรายงานสภาพ อากาศทางแอพพลิเคชั่นไลน์ อีเมล หรือ จัดเจ้าหน้าที่บรรยายสภาพอากาศที่ท่าอากาศยานทหารในภารกิจที่ ต้องมีการเดินอากาศรวมถึงการจัดเจ้าหน้าที่บรรยายสรุปในการประชุมต่าง ๆ เช่น การประชุม ศปก.ทอ. เพื่อ บรรลุเป้าหมายของภารกิจหรือหลีกเลี่ยงอันตรายจากสภาพอากาศ

คำศัพท์ที่เกี่ยวข้อง (Vocabulary)

คำศัพท์	ความหมาย	คำศัพท์	ความหมาย
weather briefing	บรรยายสรุปสภาพ	meteorological	ข้อเสนอแนะด้าน
	อากาศ	advisory	อุตุนิยมวิทยา
military terminal	ท่าอากาศยานทหาร	aviation mission	ภารกิจทางการบิน

<u>แบบฝึกหัด</u>

- 2. The weather officer must prepare for the as the Wing 6 had requested for the weather forecast at the terminal 7.00 am tomorrow.
 - a. Officer course
 - b. Pressure change chart
 - c. Weather briefing
 - d. Tropical storm

Conversation between A – Flying Officer Yaya (USAF) and B – FS1.Nadej (RTAF)

A: Hello Nadej. What are you typing?

B: I'm typing the weather forecast for briefing tomorrow.

A: Is there any request?

B: Yes, Wing 6 had requested for the weather forecast from Don Meaung to Udon Thani for the flight of Air Chief Marshal Airbull Suttiwan.

A: Check it carefully Nadej.

B: Yes sir.

บทสนทนาระหว่าง A - ร.ต.หญิง ญาญ่า (ทอ.สหรัฐอเมริกา) และ B - พ.อ.อ.ณเดช (ทอ.ไทย)

A: สวัสดีณเดช พิมพ์อะไรอยู่

B: กำลังพิมพ์พยากรณ์อากาศไปบรรยายสรุปวันพรุ่งนี้ครับ

A: มีการร้องขอมาหรือ?

B: ใช่ครับ กองบิน 6 ขอสภาพอากาศจากดอนเมือง ไปอุดรธานี สำหรับเที่ยวบินของผบ.ทอ.ครับ

A: ตรวจสอบดี ๆ นะ ณเดช

B: รับทราบครับ

2. Technical skills development (พัฒนากำลังพลด้านอุตุนิยมวิทยา)

Develop the personnel in meteorological aspect, knowledge, technique according to the changing technology.

พัฒนากำลังพลด้านอุตุนิยมวิทยาให้ก้าวทันองค์ความรู้ เทคนิค วิธีการ และเทคโนโลยีที่เปลี่ยนแปลง อย่างต่อเนื่อง

2.1 Weather education and Training (ฝึกอบรมบุคลากรสายงานอุตุนิยมวิทยา)

Provide academic training in meteorology corps which covers the non-commissioned officer course and officer course. For example, the starter course for the graduate from Air Technical Training School (ATTS), the weather technician course for the weather forecast task and the weather officer course for the officer in meteorology corps. Contact with the Thai Meteorological Department to send the staff for joining the basic and advance meteorology course or prepare the staff for apply for the IMET scholarship to attend the weather course that provided by USAF in United State of America. Moreover, projects and workshops in related fields will be conducted as per the situation and up-to-date knowledge.

จัดอบรมบุคลากรในหลักสูตรสายวิทยาการอุตุนิยมวิทยา โดยจัดให้มีหลักสูตรทั้งในระดับนายทหาร ประทวนและนายทหารสัญญาบัตร เช่น หลักสูตรเจ้าหน้าที่ข่าวอากาศขั้นพื้นฐานสำหรับผู้ที่จบจากโรงเรียนจ่า อากาศ หลักสูตรเจ้าหน้าที่เทคนิคข่าวอากาศสำหรับผู้ที่จะทำหน้าที่พยากรณ์อากาศ และหลักสูตรนายทหาร ข่าวอากาศสำหรับนายทหารสัญญาบัตรในเหล่าอุตุนิยมวิทยา ตลอดจนจัดส่งกำลังพลในสายงานอุตุนิยมวิทยา ไปศึกษาหลักสูตรอื่น ๆ นอกกองทัพอากาศ เช่น หลักสูตรอุตุนิยมวิทยาชั้นต้นและชั้นสูงของกรมอุตุนิยมวิทยา หลักสูตรตามโครงการ IMET ของสหรัฐอเมริกา เป็นต้น นอกจากนั้นยังจัดทำโครงการและสัมมนาเชิง ปฏิบัติการด้านอุตุนิยมวิทยาหรือที่เกี่ยวข้องอื่นๆ

คำศัพท์ที่เกี่ยวข้อง (Vocabulary)

คำศัพท์	ความหมาย	คำศัพท์	ความหมาย
non-commissioned	นายทหารประทวน	weather officer	นายทหารข่าวอากาศ
officer			
weather forecaster	นักพยากรณ์อากาศ	eligibility	คุณสมบัติผู้สมัคร

Conversation between A – Flying Officer Yaya (USAF) and B – FS1.Nadej (RTAF)

A: Hello Nadej. Did you apply for the weather forecaster course?

B: I didn't. What is this course about?

A: It's the course that train about weather forecast technique. It's important for you.

B: I will check the eligibility and apply for it.

A: Good luck.

B: Thank you sir.

บทสนทนาระหว่าง A - ร.ต.หญิง ญาญ่า (ทอ.สหรัฐอเมริกา) และ B - พ.อ.อ.ณเดช (ทอ.ไทย)

A: สวัสดีณเดช ได้สมัครหลักสูตรเจ้าหนี้ท่เทคนิคข่าวอากาศหรือยัง

B: ยังเลยครับ เป็นหลักสูตรเกี่ยวกับอะไรครับ

A: เป็นหลักสูตรที่สอนเกี่ยวกับเทคนิคการพยากรณ์อากาศ สำคัญมากเลยนะ

B: ผมจะตรวจสอบคุณสมบัติและสมัครครับ

A: โชคดีค่ะ

B: ขอบคุณครับ

2.2 Prepare Handbooks, manuals and training documents (จัดทำ ปรับปรุง เอกสารตำราอุตุนิยมวิทยา)

Prepare and document the handbooks, manuals, and instructional-media to be as standard according to the manual of World Meteorological Organization (WMO) and update the knowledge from the worldwide journal which can be adapted to Thailand meteorological aspects including collect the lesson-learned from the staff who attended the domestic and international meteorology course.

จัดทำ รวบรวม เรียบเรียงและปรับปรุงเอกสาร ตำรา คู่มือและสื่อการสอนทางอุตุนิยมวิทยาให้ ทันสมัยและเป็นมาตรฐาน โดยยึดหลักตามองค์การอุตุนิยมวิทยาโลก และติดตามความรู้จากงานวิจัยจาก ต่างประเทศที่สามารถนำมาปรับใช้กับองค์ความรู้อุตุนิยมวิทยาของไทยได้ รวมถึงความรู้ที่ได้จากการส่งกำลัง พลไปศึกษาหลักสูตรต่าง ๆ ทั้งในและต่างประเทศ

คำศัพท์ที่เกี่ยวข้อง (Vocabulary)

คำศัพท์	ความหมาย	คำศัพท์	ความหมาย
journal	งานวิจัย	instructional-media	สื่อการสอน
handbook	คู่มือ	adapt	ปรับใช้

แบบฝึกหัด

- 3. The ametsoc.org website provides a lot of which related to meteorological contents. All the staff in meteorology corps is encouraged to visit this website to update their own knowledge.
 - a. Weather maps
 - b. Adaptation
 - c. Weather briefing
 - d. Journals

Conversation between A – Flying Officer Yaya (USAF) and B – FS1.Nadaj (RTAF)

A : Good Morning, How are you?

B : Good Morning, I'm fine. And you?

A: I'm good

B: How can I help you?

A : Can you provide me the flight route forecast from Korat airport to Payalebar airport tomorrow?

The take-off time is 10 local time, flight time is 2 hours, at flight level 30,000 feet and we have Butterworth airport as the alternate airport.

B : OK. And what time you will come to pick up the forecast?

A : Tomorrow at 7 local time

B: 0700 OK tomorrow at 7

A : Thank you so much.

B : You're welcome

บทสนทนาระหว่าง A - ร.ต.หญิง ญาญ่า (ทอ.สหรัฐอเมริกา) และ B - พ.อ.อ.ณเดช (ทอ.ไทย)

A : สวัสดีตอนเช้า คุณสบายดีหรือไม่

B : สวัสดี ผมสบายดี แล้วคุณสบายดีหรือเปล่า

A : สบายดี

B : มีอะไรให้ผมช่วยหรือเปล่า

A : ฉันต้องการข้อมูลพยากรณ์สภาพอากาศเส้นทางบินสนามบิน โคราช ไป สนามบินพายาเลบาร์ วัน พรุ่งนี้ เวลาวิ่งขึ้น 1000 เวลาท้องถิ่น ใช้เวลาบิน 2 ชั่วโมง ที่ระดับบิน 30,000 ฟุต มีสนามบินบัต เตอร์เวอร์ตเป็นสนามบินสำรอง

B : จะมารับข้อมูลเวลาเท่าไร

A : พรุ่งนี้ เวลา 0700 เวลาท้องถิ่น

B : ได้ครับ พรุ่งนี้ 0700

A : ขอบคุณ

B : ด้วยความยินดี

Index

Definitions (นิยามศัพท์)

อุตุนิยมวิทยา Meteorology

ลม Wind

กำลังลม หรือแรงลม Wind force

ทิศทางลม Wind direction

ลมเวียนขวา Veering wind

ลมเวียนซ้าย Backing wind

ลมแปรปรวน Variable wind

ลมหัว หรือลมต้าน Head wind aมส่งท้าย หรือลมส่ง Tail wind

ลมกระโชก Gust wind

ลมผิวพื้น Surface wind

ลมบก หรือลมเฉลี่ยบก Land breeze

ลมทะเล หรือลมเฉลี่ยทะเล Sea breeze - Lake breeze

มรสุมฤดูร้อน Summer monsoon

มรสุมฤดูหนาว Winter monsoon

ลมชั้นบน Upper wind

ทัศนวิสัย Visibility

ทัศนวิสัยตามแนวนอน Horizontal visibility

ทัศนวิสัยในแนวตั้ง Vertical visibility

ทัศนวิสัยในแนวเอียง Obique visibility – Slant visibility

ทัศนวิสัยนอกเกณฑ์ Exceptional visibility

วัตถุ หรือเป้าทัศนวิสัย Visibility marker – Visibility object

เมฆ Cloud

การจัดแบ่งแยกเมฆ Cloud Classification

เมฆซีร์รัส (Ci) Cirrus

เมฆซีร์โรคิวมูลัส (Cc) Cirrocumulus

เมฆซีร์โรสเตรตัส (Cs) Cirrostratus

เมฆแอลโตคิวมูลัส (Ac) Altocumulus

เมฆแอลโตสเตรตัส (As) Altostratus

เมฆสเตรโตคิวมูลัส (Sc) Stratocumulus

เมฆสเตรตัส (St) Stratus

เมฆคิวมูลัส (Cu) Cumulus

เมฆนิมโบสเตรตัส (Ns) Nimbostratus เมฆคิวมูโลนิมบัส (Cb) Cumulonimbus

เวอร์ก้า (vir) Virga

ฐานเมฆ Cloud base ยอดเมฆ Cloud Top

ความสูงของเมฆ Vertical extent of a cloud

ชั้นของเมฆ Cloud Layer

เมฆชั้นต่ำ Low - level cloud - Low cloud

เมฆชั้นกลาง Medium - level cloud - Middle cloud

เมฆชั้นสูง High - level cloud - High cloud

การเกิดเมฆและการจัดตัวของเมฆ Cloud formation and arrangement of clouds

อุณหภูมิอากาศ Air temperature

อุณหภูมิตุ้มแห้ง Dry-bulb temperature อุณหภูมิตุ้มเปียก Wet-bulb temperature

จุดเยือกแข็งFreezing pointจุดเดือดBoiling pointจุดหลอมเหลวMelting point

อุณหภูมิสูงสุดประจำวัน
 อุณหภูมิต่ำสุดประจำวัน
 อุณหภูมิเฉลี่ยรายวัน
 Daily maximum temperature
 อุณหภูมิเฉลี่ยรายวัน
 Mean daily temperature

 น้ำฟ้า หรือหยาดน้ำฟ้า
 Precipitation

 ฝนละออง หรือฝนหยิม
 Drizzle = DZ

 ฝน
 Rain = RA

 ฝนซู่ หรือฝนไล่ช้าง
 Shower

จำนวนฝน หรือปริมาณฝน Rainfall amount

หิมะ Snow = SN

เกล็ดหิมะSnow Grains = SGผลึกน้ำแข็งIce Crystals = ICเกล็ดน้ำแข็งIce Pellets = PE

ลูกเห็บและลูกเห็บขนาดเล็ก Hail = GR and Small Hail = GS

เกล็ดหิมะ Snow Pellets = GS

น้ำท่วม หรือน้ำขัง Flood

ท่วมฉับพลัน หรือน้ำป่า Flash flood

ภัยแล้ง Drought

น้ำป่าไหลหลาก Flash flood

น้ำล้นตลิ่ง Overbank Flow

พายุหมุนเขตร้อน หรือพายุไซโคลนเขตร้อน Tropical cyclone

พายุโซนร้อน Tropical Storm

พายุใต้ฝุ่น Typhoon พายุทอร์เนโด หรือลมงวง Tornado

ลมบ้าหมู ลมหมุน dust devil, whirl wind

พายุฟ้าคะนอง Thunderstorm

น้ำค้าง Dew

ฮอร์ฟรอสต์ Hoar frost

 หมอก
 Fog

 หมอกน้ำค้าง
 Mist

 หมอกแดด
 Haze

เครื่องมืออุตุนิยมวิทยา Meteorological Instrument

เทอร์มอมิเตอร์ (เทอร์โมมิเตอร์) หรือเครื่องวัด Thermometer

อุณหภูมิ

เทอร์โมกราฟ หรือเครื่องวัดอุณหภูมิแบบ Thermograph

กราฟ

เรือนเทอร์มอมิเตอร์ หรือตู้สกรีน Thermometer screen – thermometer

shelter

บารอมิเตอร์ (บาโรมิเตอร์) หรือเครื่อง (มาตร) Barometer

วัดความกดอากาศ

บารอมิเตอร์ปรอท Mercury barometer บารอมิเตอร์ตลับ หรือเครื่องวัด Aneriod barometer

ความกดอากาศแบบตลับ หรือ แอน

เนอรอยด์บารอมิเตอร์

แอนนิมอมิเตอร์ หรือเครื่องวัดลม หรือมาตร Anemometer

วัดลม

ถุงวัดลม Wind sleeve - Wind sock

กล้องที่ออโดไลต์ หรือกล้องวัดมุม Theodolite ไฮกรอมิเตอร์ Hygrometer

ไฮกรอมิเตอร์แบบเส้นผม Hair hygrometer โพรเจคเตอร์ฐานเมฆ Ceiling projector เครื่องวัดน้ำฝน Raingauge

.....

References (เอกสารอ้างอิง)

Defense Language Institute English Language Center. American language course Module 006 Weather. December, 1994.

- Thai Meteorological Department, Meteorological Terms,
- https://www.tmd.go.th/info/info.php?FileID=29